

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 1

Chapter 1: Introduction

1. Unix Components/Architecture

2. Features of Unix

3. The UNIX Environment and UNIX Structure, Posix and Single Unix specification

4. General features of Unix commands/ command structure. Command arguments and options

5. Basic Unix commands such as echo, printf, ls, who, date,passwd, cal, Combining commands

6. Meaning of Internal and external commands

7. The type command: knowing the type of a command and locating it

8. The root login. Becoming the super user: su command

 Unix Components/Architecture

1.1 The Operating System

 An operating system is the software that manages the computer's hardware and provides

a convenient and safe environment for running programs.

 It acts as an interface between user programs and the hardware resources that these programs access

like – processor, memory, hard disk, printer & so on.

 It is loaded into memory when a computer is booted and remains active as long as the machine is up.

1.2 The UNIX Operating System

 Like DOS and Windows, there's another operating system called UNIX.

 UNIX is a giant operating system with sheer power.

 Developed by Ken Thompson and Dennis Ritchie.

 It runs practically on every Hardware and provided inspiration to the Open Source movement.

 You interact with a UNIX system through a command interpreter called the shell.

Unix Components/Architecture

 The UNIX architecture has three important agencies-

 Division of labor: Kernel and shell

 The file and process

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 2

 The system calls

Division of labor: Kernel and shell

The Kernel

 The kernel interacts with the machine's hardware

 The core of the operating system - a collection of routines mostly written in C.

 It is loaded into memory when the system is booted and communicates directly with the

hardware.

 User programs (the applications) that need to access the hardware use the services of the

kernel, which performs the job on the user's behalf.

 These programs access the kernel through a set of functions called system calls.

 Apart from providing support to user's program, kernel also does important housekeeping.

 It manages the system's memory, schedules processes, and decides their priorities and so on.

 The kernel has to do a lot of this work even if no user program is running.

 The kernel is also called as the operating system - a programs gateway to the computer's

resources.

The Shell

 Computers don't have any capability of translating commands into action.

 That requires a command interpreter, also called as the shell.

 Shell is acts interface between the user and the kernel.

 Most of the time, there's only one kernel running on the system, there could be

several shells running – one for each user logged in.

 The shell accepts commands from user, if require rebuilds a user command,

and finally communicates with the kernel to see that the command is executed.

 Example:

$ echo VTU Belagavi #Shell rebuilds echo command by removing multiple spaces

VTU Belagavi

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 3

 The following figure shows the kernel-shell Relationship:

The file and process

 Two simple entities support the UNIX – the file and the process.

 “Files have places and processes have life”

The File

 A file is just an array of bytes and can contain virtually anything.

 A file forms a Hierarchical file system.

 Every file in UNIX is part of the one file structure provided by UNIX.

 UNIX considers directories and devices as members of the file system.

The Process

 The process is the name given to the file when it is executed as a program (Process is

program under execution).

 We can say process is the “time image” of an executable file.

 UNIX provides tools to control processes move them between foreground and background and

kill them.

The System Calls

 The UNIX system-comprising the kernel, shell and applications-is written in C.

 Though there are several commands that use functions called system calls to communicate with the

kernel.

 All UNIX flavors have one thing in common – they use the same systemcalls. Eg: write, open

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 4

 Features of Unix

1. A Multiuser System

 UNIX is a multiprogramming system, it permits multiple programs to run and compete for the

attention of the CPU.

 This can happen in two ways:

- Multiple users can run separate jobs

- A single user can also run multiple jobs

 A single user system where the CPU, memory and hard disks are all dedicated to a single user.

 In UNIX, the resources are shared between all users; UNIX is also a multiuser system.

2. A Multitasking System

 A single user can also run multiple tasks concurrently.

 UNIX is a multitasking system.

 It is usual for a user to edit a file, print another one on the printer, send email to a friend and browse

www- all without leaving any of applications.

 The kernel is designed to handle a user's multiple needs.

 In a multitasking environment, a user sees one job running in the foreground; the rest run in the

background.

 User can switch jobs between background and foreground, suspend, or even terminate them.

3. The Building-block Approach

 The designer never attempted to pack too many features into a few tools.

 Instead, they felt “small is beautiful”, and developed a few hundred commands each of which

performed one simple job.

 UNIX offers the | (filters) to combine various simple tools to carry out complex jobs.

 By interconnecting a number of tools , we can have a large number of combinations of their usage.

 Example:

$ cat note #cat displays the file contents

WELCOME TO BRCE

$ cat note | wc #wc counts number of lines, words & characters in the file

1 3 15

4. The UNIX Toolkit

 There are general-purpose tools, text manipulation utilities (filters), compilers and

interpreters , networked applications, system administration tools and shells.

5. Pattern Matching

 UNIX features very sophisticated pattern matching features.

 Example: The * (zero or more occurrences of characters) is a special character used by system

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 5

to indicate that it can match a number of filenames.

6. Programming Facility

 The UNIX shell is also a programming language; it was designed for programmer, not for end user.

 It has all the necessary ingredients, like control structures, loops and variables, that establish

powerful programming language.

 These features are used to design shell scripts – programs that can also invoke UNIX commands.

 Many of the system's functions can be controlled and automated by using these shell scripts.

7. Documentation

 The principal on-line help facility available is the man command, which remains the most

important references for commands and their configuration files.

 Apart from the man documentation, there's a vast ocean of UNIX resources available on the Internet.

 UNIX Environment and UNIX Structure

 A variable that specifies how an operating system or another program runs, or the devices

that the operating system recognizes.

 Set of dynamic values that can affect the way running processes will behave on a computer.

 A string consisting of environment information, such as a drive, path, or filename,

associated with a symbolic name that can be used by MS-DOS and Windows.

 POSIX AND THE SINGLE UNIX SPECIFICATION

 Dennis Ritchie's decision to rewrite UNIX in C didn't make UNIX portable.

 UNIX fragmentation and absence of single standard affected the development of portable

applications.

 First, AT&T creates the System V Interface Definition (SVID).

 Later, X/Open – a consortium of vendors and users, created the X/Open Portability Guide (XPG).

 Products of this specification were UNIX95, UNIX98 and UNIX03.

 Yet another group of standards, the POSIX (Portable Operating System for Computer Environment)

were developed by IEEE (Institute of Electrical and Electronics Engineers).

 Two of the most important standards from POSIX are:

 POSIX.1 – Specifies the C application program interface – the system calls (Kernel).

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 6

 POSIX.2 – Deals with the Shell and utilities.

 In 2001, a joint initiative of X/Open and IEEE resulted in the unification of two standards.

 This is the Single UNIX Specification, Version 3 (SUSV3).

 The “Write once, adopt everywhere” approach to this development means that once software has

been developed on any POSIX machine it can be easily ported to another POSIX compliant machine

with minimum or no modification.

 General features of Unix Commands/Command structure

The following table lists keyboard commands to try when things go wrong.

 Basic Unix commands such as echo, printf, ls, who, date,passwd, cal, Combining

commands

1. echo: Displaying The Message

 echo command is used is shell scripts to display a message on the terminal, or to issue a

prompt for taking user input.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 7

$ echo "Enter your

name:\c" Enter your

name:$_

$echo $SHELL

/usr/bin/bash

 Echo can be used with different escape sequences

Constant Meaning

„a‟ Audible Alert (Bell)

„b‟ Back Space

„f‟ Form Feed

„n‟ New Line

„r ‟ Carriage Return

„t‟ Horizontal Tab

„v‟ Vertical Tab

„\‟ Backslash

„\0n‟ ASCII character represented by the octal value n

2. printf: An Alternative To Echo

 The printf command is available on most modern UNIX systems, and is the one we can use

instead of echo. The command in the simplest form can be used in the same way as echo:

$ printf “Enter your

name\n” Enter your name

$_

 printf also accepts all escape sequences used by echo, but unlike echo, it doesn ‟t

automatically insert newline unless the \n is used explicitly. printf also uses formatted

strings in the same way the C language function of the same name uses them:

$ printf "My current shell is %s\n" $SHELL

My current shell is /bin/bash

$_

 The %s format string acts as a placeholder for the value of $SHELL, and printf replaces %s

with the value of $SHELL. %s is the standard format used for printing strings. printf uses

many of the formats used by C‟s printf function. Here are some of the commonly used ones:

%s – String

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 8

%30s – As above but printed in a space 30 characters wide

%d – Decimal integer

%6d - As above but printed in a space 30 characters wide

%o – Octal integer

%x – Hexadecimal integer

%f – Floating point number

Example:

$ printf "The value of 255 is %o in octal and %x in hexadecimal\n" 255 255

The value of 255 is 377 in octal and ff in hexadecimal

3. ls:listing directories and files

 The command to list your directories and files is ls.

 With options it can provide information about the size, type of file, permissions, dates of file

creation, change and access.

Syntax

ls [options] [argument]

 When no argument is used, the listing will be of the current directory. There are many very useful

options for the ls command. A listing of many of them follows. When using the command, string the

desired options together preceded by "-".

- a Lists all files, including those beginning with a dot (.).

- d Lists only names of directories, not the files in the directory

- F Indicates type of entry with a trailing symbol: executables with *, directories with / and

symbolic links

- R Recursive list

- u Sorts filenames by last access time

- t Sorts filenames by last modification time

- i Displays inode number

- l Long listing: lists the mode, link information, owner, size, last modification (time). If the file is

a symbolic link, an arrow (-->) precedes the pathname of the linked-to file.

- x multicolumnar output

$ls –ld helpdir progs

- drwxr-xr-x 2 kumar metal 512 may 9 10:31 helpdir

- drwxr-xr-x 2 kumar metal 512 may 9 09:57

progs output in multiple columns(-x):

$ ls –x

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 9

Identifying Directories and executables(-F)

$ ls –Fx

Showing hidden files(-a)

$ ls -axF

Listing directory contents

$ ls -x

4. who: Who Are The Users

 UNIX maintains an account of list of all users logged on to the system. The who command

displays an informative listing of these users:

$ who

root tty7 2017-09-04 16:38 (:0)

root tty17 2017-09-04 16:38 (:0)

$_

 Following command displays the header information with –H option,

$ who -H

NAME LINE TIME

 COMMENT root tty7 2017-09-

04 16:38 (:0)

$_

 -u option is used with who command displays detailed information of users:

$ who -Hu

NAME LINE TIME IDLE PID

COMMENT root tty7 2017-09-04 16:38 00:18

 1865 (:0)

$_

5. date: Displaying The System Date

 One can display the current date with the date command, which shows the date and time to

the nearest second:

$ date

Mon Sep 4 16:40:02 IST 2017

 The command can also be used with suitable format specifiers as arguments. Each symbol is

preceded by the + symbol, followed by the % operator, and a single character describing the

format. For instance, you can print only the month using the format +%m:

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 10

$date +%m

09

Or

the month name name:

$ date +%h

Aug

Or

You can combine them in one command:

$ date + “%h %m”

Aug 08

 There are many other format specifiers, and the useful ones are listed below:

- d – The day of month (1 - 31)

- y – The last two digits of the year.

- H, M and S – The hour, minute and second, respectively.

- D – The date in the format mm/dd/yy

- T – The time in the format hh:mm:ss

6. Passwd: Changing your password

 Password prevents from accessing the system

 If account doesn’t have password or has one that is already known to others, should change it

immediately.

 This can be done with passwd command:

$ passwd

passwd: changing password for Kumar

Enter login password: ******* Asks for old password

New password: ********

Re-enter new password: ********

passwd (SYSTEM): passwd successfully changed for Kumar

 Passwd expects you to respond three times. First, it primpts for the old password. Next, it schecks

whether you have entered a valid password, and if you have, it then prompts for the new password.

 Enter the new password using the password naming rules.

 Finally, passwd asks you to reenter the new password. Later, the new password is registered by the

system.

 Rules for framing your own password:

- Don’t choose a password similar to the old one.

- Don’t use commonly used names like names of friends, relatives, pets and so forth.

- Use a mix of alphabetic or numeric characters.

- Don’t write a password in an easily accessible document.

- Change the password regularly.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 11

7. cal: The Calendar

 cal command can be used to see the calendar of any specific month or a complete year.

Syntax:

cal [[month] year]

 Everything within the rectangular box in optional. So cal can be used without any arguments, in

which case it displays the calendar of the current month

$ cal

September 2017

Su Mo Tu We Th Fr Sa

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

 The syntax show that cal can be used with arguments, the month is optional but year is not.

To see the calendar of month August 2017, we need to use two arguments as shown below,

$ cal 8 2017

August 2017

Su Mo Tu We Th Fr Sa

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

 You can‟t hold the calendar of a year in a single screen page; it scrolls off rapidly before you

can use [ctrl-s] to make it pause. To make cal pause using pager using the | symbol to connect

them.

$cal 2017 | more

8. Combining commands

 UNIX allows you to specify more than one command in the single command line.

Example:

$ wc note; ls -l note #Two commands combined here using ; (semicolon)

2 3 16 note

-rw-rw-r-- 1 mahesh mahesh 16 Jan 30 09:35 note

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 12

In the above example, wc command returns number of lines, words and characters in that file, and

ls –l command returns list all the attributes of the file

 A command line can overflow or be split into multiple lines

 UNIX terminal width is restricted to maximum 80 characters.

 Shell allows command line to overflow or be split into multiple lines.

Example:

$ echo “This is # $ first prompt

> a three-line # > Second prompt

> text message” #Command line ends here

This is

a three-line text

message

 INTERNAL AND EXTERNAL COMMANDS

 When the shell execute command(file) from its own set of built-in commands that are not

stored as separate files in /bin directory, it is called internal command.

 They can be executed any time and are independent.

 If the command (file) has an independence existence in the /bin directory, it is called

external command.

 External commands are loaded when the user requests for them. It will have an individual

process.

Examples:

$ type echo # echo is an internal command

echo is shell built-in

$ type ls # ls is an external command

ls is /bin/ls

 If the command exists both as an internal and external one, shell execute internal command

only.

 Internal commands will have top priority compare to external command of same name.

 The type command: knowing the type of a command and locating it

 The type command is used to describe how its argument would be translated if used as commands. It

is also used to find out whether it is built-in or external binary file.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 13

 The type command is shell builtin.

Syntax:

type [Options] command names

 If you want to know the location of executable program (or command), use type command-

Example:

$ type date

date is /bin/date

$ type echo

echo is a shell builtin

 When you execute date command, the shell locates this file in the /bin directory and makes

arrangements to execute it.

 The root login. Becoming the super user: su command.

 The unix system provides a special login name for the exclusive use of the administrator;

it is called root. This account doesn‟t need to be separately created but comes with

every system. Its password is generally set at the time of installation of the system and

has to be used on logging in:

Becoming the super at login time

login: root

Password: ********* [Enter]

-

 The prompt of root is #

 Once you login as a root you are placed in root’s home directory. Depending on the system, this

directory could be / or /root.

 Administrative commands are resident in /sbin and /usr/sbi modern systems and in older system it

resides in /etc.

 Roots PATH list includes detailed path, for example:

/sbin:/bin:/usr/sbin:/usr/bin:/usr/dt/bin

Becoming the super user using su command

$ su: Acquiring superuser status

 Any user can acquire superuser status with the su command if they know the

root password. For example, the user abc becomes a superuser in this way.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 14

$ su

Password: *********** #Password of root user

#pwd

/home/abc

 Though the current directory doesn‟t change, the # prompt indicates that abc now has

powers of a superuser. To be in root‟s home directory on superuser login, use su –l.

 User‟s often rush to the administrator with the complaint that a program has

stopped running. The administrator first tries running it in a simulated environment.

Su command when used with a – (minus), recreates the user‟s environment without

the login-password route:

$su – abc

 This sequence executes abc’s .profile and temporarily creates abc’s environment.

su runs in a separate sub-shell, so this mode is terminated by hitting [ctrl-d] or

using exit.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 15

Chapter 2: UNIX files

1. Naming files.

2. Basic file types/categories.

3. Parent child relationship.

4. The home directory and the HOME variable.

5. Reaching required files- the PATH variable, manipulating the PATH, Relative and absolute pathnames.

6. Directory commands – pwd, cd, mkdir, rmdir commands.

7. The dot (.) and double dots (..) notations to represent present and parent directories and their usage in

relative path names.

8. File related commands – cat, mv, rm, cp, wc and od commands.

The File

 The file is the container for storing information.

 Neither a file's size nor its name is stored in file.

 All file attributes such as file type, permissions, links, owner, group owner etc are kept in a

separate area of the hard disk, not directly accessible to humans, but only to kernel.

 UNIX treats directories and devices as files as well.

 All physical devices like hard disk, memory, CD-ROM, printer and modem are treated as files.

2.1 Naming files

 A filename can consist up to 255 characters.

 File may or may not have extensions, and consist of any ASCII character expect the / & NULL

character.

 Users are permitted to use control characters or other unprintable characters in a filename.

 Examples - .last_time list. @#$%*abcd a.b.c.d.e

 But, it is recommended that only the following characters be used in filenames-

 Alphabetic characters and numerals

 the period(.), hyphen(-) and underscore(_).

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 16

2.2 Basic file types/categories

 The UNIX has divided files into three categories:

1. Ordinary file – also called as regular file. It contains only data as a stream of characters.

2. Directory file – it contains files and other sub-directories.

3. Device file – all devices and peripherals are represented by files.

Ordinary File (Regular)

 The most common file type.

 Ordinary file itself can be divided into two types-

1. Text File – it contains only printable characters, and you can often view the contents and make

sense out of them. e.g.: C and Java program files, shell and perl scripts.

2. Binary file – it contains both printable and unprintable characters that cover entire ASCII range.

e.g.:- Most Unix commands, executable files, pictures, sound and video files are binary.

Directory File

 A directory contains no data but keeps some details of the files and subdirectories that it contains.

 A directory file contains an entry for every file and subdirectories that it houses. If you have 20

files in a directory, there will be 20 entries in the directory.

 Each entry has two components-

- the filename

- a unique identification number for the file or directory (called as inode number).

 When any file is created or removed, the kernel automatically updates its corresponding directory by

adding or removing the entry (inode number & filename) associated with that file.

Device File

 Installing software from CD-ROM, printing files and backing up data files to tape.

 All of these activities are performed by reading or writing the file representing the device.

 Advantage of device file is that some of the commands used to access an ordinary file also work

with device file.

 Device filenames are generally found in a single directory structure, /dev.

 The attributes of every file is stored on the disk.

 The kernel identifies a device from its attributes and then uses them to operate the device.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 17

2.3 Parent child relationship

 The files in UNIX are related to one another.

 The file system in UNIX is a collection of all of these files (ordinary, directory and device files)

organized in a Hierarchical (an inverted tree) structure as shown in below figure,

.

 The feature of UNIX file system is that there is a top, which serves as the reference point for all files

 This top is called root and is represented by a / (Front slash).

 The root is actually a directory.

 The root directory (/) has a number of subdirectories under it.

 The subdirectories in turn have more subdirectories and other files under them.

 Every file apart from root, must have a parent, and it should be possible to trace the ultimate

parentage of a file to root.

 In parent-child relationship, the parent is always a directory.

 The home directory is the parent of mthomas. / is the parent of home and the grandparent of

mthomas.

2.4 The home directory and the HOME variable.

 When you logon to the system, UNIX places you in a directory called home directory.

 It is created by the system when the user account is created.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 18

 If a user login using the login name kumar, user will land up in a directory that could have the path

name /home/kumar.

 The shell variable HOME knows the home directory.

$echo $HOME

/home/kumar

2.5 Reaching required files- the PATH variable, manipulating the PATH, Relative and

absolute pathnames.

PATH

 A shell variable that contains a colon-delimited list of directories that the shell will lok through to locate a

command invoked by user.

 The PATH generally includes /bin and /usr/bin for nonprivileged users and /bin and /usr/sbin for the

superuser.

 Use echo to evaluate this variable in which directory list separated by colons:

$ echo $PATH

/bin:/usr/bin:/usr/local/bin:/usr/ccs/bin:/usr/local/java/bin:.

There are six directories in this colon separated list.

 When you issue a command , the shell searches this list in the sequence specified to locate and execute it.

Absolute Pathnames:

 It shows a file’s location with reference to the top, i.e., root

 It is simply a sequence of directory names separated by slashes

e.g.: /home/kumar

 Suppose we are placed in /usr and want to access the file login.sql which is present in /home/kumar,

we can give the pathname of the file as below:

cat /home/kumar/login.sql

 If the first character of a pathname is /, the file’s location must be determined wrt root(the first /).such

a pathname is called an absolute pathname.

 If you know the location of a particular command, you van precede its name with the complete path.

 Since date reside in/bin (or /usr/bin), you can use the absolute pathname:

$ /bin/date

Thu Sep 1 09:39:55 IST 2020

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 19

2.6 The dot (.) and double dots (..) notations to represent present and parent directories

and their usage in relative path names.

 Relative path is defined as the path related to the present working directly(pwd). It starts at your

current directory and never starts with a /.

 A pathname which specifies the location of a file using the symbols. and ..

. (single dot) –represents the current directory

.. (two dots) –represents the parent directory

 Assume that we are in /home/kumar/progs/data/text , we can use .. as an argument to cd to move to the

parent directory, /home/kumar/progs/data as shown below:

$ pwd

/home/kumar/progs/data/text

$ cd .. // moves one level up

$ pwd

/home/kumar/progs/data

 To move to /home , we can use the relative path name as follows:

$ pwd

/home/kumar/pis

$ cd ../.. // moves two levels up

$ pwd

/home

2.7 Directory commands – pwd, cd, mkdir, rmdir commands.

pwd: CHECKING YOUR CURRENT DIRECTORY

 pwd is print working directory

 Any time user can know the current working directory using pwd command.

$ pwd

/home/kumar

 Like HOME, pwd displays the absolute path.

cd: CHANGING THE CURRENT DIRECTORY

 User can move around the UNIX file system using cd (change directory) command.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 20

When used with the argument, it changes the current

directory to the directoryspecified as argument, progs:

$ pwd

/home/kumar

$ cd progs

$ pwd

/home/kumar/progs

cd can also be used without arguments:

$ pwd

/home/kumar/progs

$cd

$ pwd

/home/kumar

Here we are using the relative pathname of progs

directory. The same can be done with the absolute

pathname also.

$cd /home/kumar/progs

$ pwd

/home/kumar/progs

$cd /bin

$ pwd

/bin

cd without argument changes the working directory

to home directory.

$cd /home/sharma

$ pwd

/home/sharma

$cd

/home/kumar

mkdir: MAKING DIRECTORIES

 Directories are created with mkdir (make directory) command.

 The command is followed by names of the directories to be created. A directory patch is created

under current directory like this:

$mkdir patch

 You can create a number of subdirectories with one mkdir command:

$mkdir patch dba doc

 For instance the following command creates a directory tree:

$mkdir progs progs/cprogs progs/javaprogs

 This creates three subdirectories – progs, cprogs and javaprogs under progs.

 The order of specifying arguments is important. You cannot create subdirectories before creation of

parent directory.

 For instance following command doesn‘t work

$mkdir progs/cprogs progs/javaprogs progs

mkdir: Failed to make directory “progs/cprogs”; No such directory mkdir: Failed to make

directory “progs/javaprogs”; No such directory

 System refuses to create a directory due to fallowing reasons:

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 21

- The directory is already exists.

- There may be ordinary file by that name in the current directory.

- User doesn‘t have permission to create directory

rmdir: REMOVING A DIRECTORY

 The rmdir (remove directory) command removes the directories. You have to do this to remove

progs:

$rmdir progs

 If progs is empty directory then it will be removed form system.

 Following command used with mkdir fails with rmdir

$mkdir progs progs/cprogs progs/javaprogs

rmdir: directory “progs”: Directory not empty

 First subdirectories need to be removed from the system then parent.

 Following command works with rmdir

$mkdir progs/cprogs progs/javaprogs progs

 First it removes cprogs and javaprogs form progs directory and then it removes progs fro system.

 rmdir : Things to remember

 You can‘t remove a directory which is not empty

 You can‘t remove a directory which doesn‘t exist in system.

 You can‘t removes a directory if you don‘t have permission to do so.

2.8 File related commands – cat, mv, rm, cp, wc and od commands.

cat: DISPLAYING AND CREATING FILES

 cat command is used to display the contents of a small file on the terminal.

$ cat cprogram.c # include

<stdioh> void main ()

{

Printf(―hello‖);

}

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 22

 As like other files cat accepts more than one filename as arguments

$ cat ch1 ch2

It contains the contents of chapter1

It contains the contents of chapter2

 The contents of the second files are shown immediately after the first file without any header

information. So cat concatenates two files- hence its name

cat OPTIONS

Displaying Nonprinting Characters (-v)

 cat without any option it will display text files. Nonprinting ASCII characters can be displayed

with –v option.

Numbering Lines (-n)

 -n option numbers lines. This numbering option helps programmer in debugging programs.

Using cat to create a file

 cat is also useful for creating a file. Enter the command cat, followed by > character and the

filename.

$ cat > new

This is a new file which contains some text, just to Add some

contents to the file new

[ctrl-d]

$_

 When the command line is terminated with [Enter], the prompt vanishes. Cat now waits to take

input from the user. Enter few lines; press [ctrl-d] to signify the end of input to the system

 To display the file contents of new use file name with cat command.

$ cat new

This is a new file which contains some text, just to Add some

contents to the file new

mv: RENAMING FILES

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 23

 The mv command renames (moves) files. The main two functions are:

1. It renames a file(or directory)

2. It moves a group of files to different directory

 It doesn't create a copy of the file; it merely renames it. No additional space is consumed on disk

during renaming.

Eg : To rename the file csb as csa we can use the following command

$ mv csb csa

 If the destination file doesn‘t exist in the current directory, it will be created. Or else it will just

rename the specified file in mv command.

 A group of files can be moved to a directory.

Eg : Moves three files ch1,ch2,ch3 to the directory module

$ mv ch1 ch2 ch3 module

 Can also used to rename directory

$ mv rename newname

 mv replaces the filename in the existing directory entry with the new name. It doesn't create a

copy of the file; it renames it.

 Group of files can be moved to a directory

 mv chp1 chap2 chap3 unix

rm: DELETING FILES

 The rm command deletes one or more files.

Eg: Following command deletes three files:

$ rm mod1 mod2 mod3

 Can remove two chapters from usp directory without having to cd

Eg:

$rm usp/marks ds/marks

 To remove all file in a directory use *

$ rm *

 Removes all files from that directory

rm options

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 24

 Interactive Deletion (-i) : Ask the user confirmation before removing each file:

$ rm -i ch1 ch2

rm: remove ch1 (yes/no)? ? y

rm: remove ch1 (yes/no)? ? n [Enter]

 A y removes the file (ch1) any other response like n or any other key leave the file

undeleted.

 Recursive deletion (-r or -R): It performs a recursive search for all directories and files

within these subdirectories. At each stage it deletes everything it finds.

$ rm -r * Works as rmdir

 It deletes all files in the current directory and all its subdirectories.

 Forcing Removal (-f): rm prompts for removal if a file is write-protected. The -f

option overrides this minor protection and forces removal.

rm -rf* Deletes everything in the current directory and below

cp: COPYING A File

 The cp command copies a file or a group of files. It creates an exact image of the file on the

disk with a different name. The syntax takes two filename to be specified in the

command line.

 When both are ordinary files, first file is copied to second.

$ cp csa csb

 If the destination file (csb) doesn‘t exist, it will first be created before copying takes place. If

not it will simply be overwritten without any warning from the system.

Example to show two ways of copying files to the cs directory:

$ cp ch1 cs/module1 #ch1 copied to module1 under cs

$ cp ch1 cs #ch1 retains its name under cs

 cp can also be used with the shorthand notation, .(dot), to signify the current directory as the

destination. To copy a file „new from /home/user1 to your current directory, use the following

command:

$cp /home/user1/new #new destination is a file

$cp /home/user1/new . #destination is the current directory

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 25

 cp command can be used to copy more than one file with a single invocation of the

command. In this case the last filename must be a directory.

Eg: To copy the file ch1,chh2, ch3 to the module , use cp as

$ cp ch1 ch2 ch3 module

 The files will have the same name in module. If the files are already resident in module,

they will be overwritten. In the above diagram module directoryshould already exist and

cp doesn‘t able create a directory.

 UNIX system uses * as a shorthand for multiple filenames.

Eg:

$ cp ch* usp #Copies all the files beginning with ch

cp options

 Interactive Copying(-i) : The –i option warns the user before overwriting the

destination file, If unit 1 exists, cp prompts for response

$ cp -i ch1 unit1

$ cp: overwrite unit1 (yes/no)? Y

 A y at this prompt overwrites the file, any other response leaves it uncopied.

Copying directory structure (-R) :

 It performs recursive behavior command can descend a directory and examine all files in

its subdirectories.

 -R : behaves recursively to copy an entire directory structure

$ cp -R usp newusp

$ cp -R class newclass

 If the newclass/newusp doesn‘t exist, cp creates it along with the associated

subdirectories.

wc: COUNTING LINES,WORDS AND CHARACTERS

 wc command performs Word counting including counting of lines and characters in a

specified file. It takes one or more filename as arguments and displays a four columnar

output.

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 26

$ wc ofile

4 20 97 ofile

 Line: Any group of characters not containing a newline

 Word: group of characters not containing a space, tab or newline

 Character: smallest unit of information, and includes a space, tab and newline

 wc offers 3 options to make a specific count. –l option counts only number of lines, - w and –

c options count words and characters, respectively.

$ wc -l ofile

4 ofile

$ wc -w ofile

20 ofile

$ wc -c ofile

97 ofile

 Multiple filenames, wc produces a line for each file, as well as a total count.

$ wc chap01 chap02 chap03

od: DISPLAYING DATA IN OCTAL

 od command displays the contents of executable files in a ASCII octal value.

$ more ofile

this file is an example for od command

^d used as an interrupt key

 -b option displays this value for each character separately.

 Each line displays 16 bytes of data in octal, preceded by the offset in the file of the first

byte in the line.

$ od –b file

0000000 164 150 151 163 040 146 151 154 145 040 151 163 040 141 156 040

0000020 145 170 141 155 160 154 145 040 146 157 162 040 157 144 040 143

0000040 157 155 155 141 156 144 012 136 144 040 165 163 145 144 040 141

0000060 163 040 141 156 040 151 156 164 145 162 162 165 160 164 040 153

0000100 145 171

 -c character option

Module 1_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 27

 Now it shows the printable characters and its corresponding ASCII octal representation

$ od –bc file

od -bc ofile

0000000 164 150 151 163 040 146 151 154 145 040 151 163 040 141 156 040

T h i s f i l e i s a n 0000020 145 170

141 155 160 154 145 040 146 157 162 040 157 144 040 143

e x a m p l e f o r o d c 0000040 157

155 155 141 156 144 012 136 144 040 165 163 145 144 040 141

o m m a n d \n ^ d u s e d a 0000060 163

040 141 156 040 151 156 164 145 162 162 165 160 164 040 153

s a n i n t e r r u p t k 0000100 145

171

e y

Some of the representation:

 The tab character, [ctrl-i], is shown as \t and the octal value 011

 The bell character , [ctrl-g] is shown as 007, some system show it as \a

 The form feed character,[ctrl-l], is shown as \f and 014

 The LF character, [ctrl-j], is shown as \n and 012

 od makes the newline character visible too.

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 1

Chapter 1: File attributes and permissions

1. The ls command with options.

2. Changing file permissions: the relative and absolute permissions changing methods.

3. Recursively changing file permissions.

4. Directory permissions.

1. The ls command with options.

ls –l :LISTING FILE ATTRIBUTES

 ls command is used to obtain a list of all filenames in the current directory. The output in

UNIX lingo is often referred to as the listing.

 Sometimes we combine this option with other options for displaying other attributes, or

ordering the list in a different sequence.

 ls look up the file‘s inode to fetch its attributes.

 It lists seven attributes of all files in the current directory and theyare:

 File type and Permissions

o The file type and its permissions are associated with each file.

 Links

o Links indicate the number of file names maintained by the system. This does not

mean that there are so many copies of the file.

 Ownership

o File is created by the owner. The one who creates the file is the owner of that file.

 Group ownership

o Every user is attached to a group owner. Every member of that group can access the

file depending on the permission assigned.

 File size

o File size in bytes is displayed. It is the number of character in the file rather than the

actual size occupied on disk.

 Last Modification date and time

o Last modification time is the next field. If you change only the permissions or

ownership of the file, the modification time remains unchanged. If at least one

character is added or removed from the file then this field will be updated.

 File name

o In the last field, it displays the file name.

For example,

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 2

$ ls -l

total 72

-rw-r--r-- 1 kumar metal 19514 may 10 13:45 chap01

-rw-r--r-- 2 kumar metal 19555 may 10 15:45 chap02

drwxr-xr-x 2 kumar metal 512 may 09 12:55 helpdir

drwxr-xr-x 3 kumar metal 512 may 09 11:05 progs

The –d option: Listing Directory Attributes

$ls -d

This command will not list all subdirectories in the current directory .

For example,

$ls –ld helpdir progs

drwxr-xr-x 2 kumar metal 512 may 9 10:31 helpdir

drwxr-xr-x 2 kumar metal 512 may 9 09:57 progs

 Directories are easily identified in the listing by the first character of the first column, which

here shows d.

 The significance of the attributes of a directory differs a good deal from an ordinary file.

 To see the attributes of a directory rather than the files contained in it, use ls –ld with the

directory name. Note that simply using ls –d will not list all subdirectories in the current

directory. Strange though it may seem, ls has no option to list onlydirectories.

2. Changing file permissions: the relative and absolute permissions changing methods.

File Ownership

 When you create a file, you become its owner. Every owner is attached to a group owner.

 Several users may belong to a single group, but the privileges of the group are set by the owner

of the file and not by the group members.

 When the system administrator creates a user account, he has to assign these parameters to the

user:

The user-id (UID) – both its name and numeric

representation. The group-id (GID) – both its name and

numeric representation

File Permissions

 UNIX follows a three-tiered file protection system that determines a file‘s access rights.

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 3

 It is displayed in the following format: Filetype owner (rwx) groupowner (rwx) others (rwx).

For Example:

-rwxr-xr- - 1 kumar metal 20500 may 10 19:21 chap02

rwx r-x r- -

owner/user group owner others

 The first group(rwx) has all three permissions. The file is readable, writable and executable by the

owner of the file.

 The second group(r-x) has a hyphen in the middle slot, which indicates the absence of write

permission by the group owner of the file.

 The third group(r- -) has the write and execute bits absent. This set of permissions is applicable to

others.

 You can set different permissions for the three categories of users – owner, group and others.

Changing File Permissions

 A file or a directory is created with a default set of permissions, which can be determined by

umask.

 Let us assume that the file permission for the created file is -rw-r-- r--. Using chmod

command, we can change the file permissions and allow the owner to execute his file.

The command can be used in two ways:

 In a relative manner by specifying the changes to the current permissions

 In an absolute manner by specifying the final permissions

Relative Permissions

 chmod only changes the permissions specified in the command line and leaves the other

permissions unchanged.

 Its syntax is:

chmod category operation permission filename(s)

 chmod takes an expression as its argument which contains:

 user category (user, group, others)

 operation to be performed (assign or remove a permission)

 type of permission (read, write, execute)

 Category: u – user g – group o – others a - all (ugo)

 Operations : + assign - remove = absolute

 Permissions: r – read w – write x - execute

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 4

Let us discuss some examples:

 Initially,

-rw-r—r-- 1 kumar metal 1906 sep 23:38 xstart

$chmod u+x xstart

-rwxr—r-- 1 kumar metal 1906 sep 23:38 xstart

 The command assigns (+) execute (x) permission to the user (u), other permissions remain

unchanged.

$chmod ugo+x xstart or chmod a+x xstart or chmod +x xstart

$ls –l xstart

-rwxr-xr-x 1 kumar metal 1906 sep 23:38 xstart

 chmod accepts multiple file names in command line

$chmod u+x note note1 note3

 Let initially,

-rwxr-xr-x 1 kumar metal 1906 sep 23:38 xstart

$chmod go-r xstart

 Then, it becomes

$ls –l xstart

-rwx—x--x 1 kumar metal 1906 sep 23:38 xstart

Absolute Permissions

 Here, we need not to know the current file permissions. We can set all nine permissions

explicitly.

 A string of three octal digits is used as an expression.

 The permission can be represented by one octal digit for each category. For each

category, we add octal digits.

 If we represent the permissions of each category by one octal digit, this is how the

permission can be represented:

Read permission – 4 (octal 100)

Write permission – 2 (octal 010)

Execute permission – 1 (octal 001)

Octal Permissions Significance

0 --- no permissions

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 5

1 --x execute only

2 -w- write only

3 -wx write and execute

4 r-- read only

5 r-x read and execute

6 rw- read and write

7 Rwx read, write and execute

 We have three categories and three permissions for each category, so three octal digits can

describe a file‘s permissions completely. The most significant digit represents user and the least

one represents others. chmod can use this three-digit string as the expression.

 Using relative permission, we have,

$chmod a+rw xstart

 Using absolute permission, we have,

$chmod 666 xstart

-rw-rw-rw- 1 kumar metal 1906 sep 10 23:38 xstart

$chmod 644 xstart

-rw-r—r-- 1 kumar metal 1906 sep 10 23:38 xstart

$chmod 761 xstart

-rwxrw--x 1 kumar metal 1906 sep 10 23:38 xstart

 will assign all permissions to the owner, read and write permissions for the group and only

execute permission to the others.

 777 signify all permissions for all categories, but still we can prevent a file from being deleted.

 000 signifies absence of all permissions for all categories, but still we can delete a file.

 It is the directory permissions that determine whether a file can be deleted or not.

 Only owner can change the file permissions. User cannot change other user‘s file‘s permissions.

 But the system administrator can do anything.

The Security Implications

 Let the default permission for the file xstart is

-rw-r—r- - 1 kumar metal 1906 sep 10 23:38 xstart

$chmod u-rw, go-r xstart or

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 6

$chmod 000 xstart

 - 1 kumar metal 1906 sep 10 23:38 xstart

 This is simply useless but still the user can delete this file.

 On the other hand,

$chmod a+rwx xstart or chmod 777 xstart

-rwxrwxrwx 1 kumar metal 1906 sep 10 23:38 xstart

 The UNIX system by default, never allows this situation as you can never have a secure

system. Hence, directory permissions also play a very vital role here .

3. Using chmod Recursively

$chmod -R a+x shell_scripts

 This makes all the files and subdirectories found in the shell_scripts directory, executable by all

users.

 Chmod –R 755 . //work on hidden file also

Chmod –R a+X * //Leaves out hidden files

 When you know the shell meta characters well, you will appreciate that the * doesn‘t match

filenames beginning with a dot. The dot is generally a safer but note that both commands change

the permissions of directories also.

4. Directory Permissions

 It is possible that a file cannot be accessed even though it has read permission, and can be

removed even when it is write protected. The default permissions of a directory are,

rwxr-xr-x (755)

 A directory must never be writable by group and others.

 Example:

$mkdir c_progs

$ls –ld c_progs

drwxr-xr-x 2 kumar metal 512 may 9 09:57 c_progs

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 7

 If a directory has write permission for group and others also, be assured that every user can

remove every file in the directory. As a rule, you must not make directories universally writable

unless you have definite reasons to do so.

Changing File Ownership

 Usually, on BSD and AT&T systems, there are two commands meant to change the ownership of

a file or directory. Let kumar be the owner and metal be the group owner. If sharma copies a file

of kumar, then sharma will become its owner and he can manipulate the attributes.

 chown changing file owner and chgrp changing group owner

 On BSD, only system administrator can use chown

 On other systems, only the owner can change both

chown

 Changing ownership requires super user permission, so use su command

$ls -l note

-rwxr --- x 1 kumar metal 347 may 10 20:30 note

$chown sharma note; ls -l note

-rwxr --- x 1 sharma metal 347 may 10 20:30 note

 Once ownership of the file has been given away to sharma, the user file permissions that

previously applied to Kumar now apply to sharma. Thus, Kumar can no longer edit note since

there is no write privilege for group and others. He cannot get back the ownership either. But he

can copy the file to his own directory, in which case he becomes the owner of the copy.

chgrp

 This command changes the file‘s group owner. No super user permission is required.

#ls –l dept.lst

-rw-r—r-- 1 kumar metal 139 jun 8 16:43 dept.lst

#chgrp dba dept.lst; ls –l dept.lst

-rw-r—r-- 1 kumar dba 139 Jun 8 16:43 dept.lst

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 8

Chapter 2: The Shells Interpretive Cycle

1. Wild cards.

2. Removing the special meanings of wild cards.

3. Three standard files and redirection.

4. Connecting commands: Pipe.

5. Basic and Extended regular expressions.

6. The grep, egrep.

7. Typical examples involving different regular expressions.

THE SHELL

 Shell acts as both a command interpreter as well as a programming facility.

The shell and its interpretive cycle

 The shell sits between you and the operating system, acting as a command interpreter.

 It reads your terminal input and translates the commands into actions taken by the system.

 When you log into the system you are given a default shell.

 When the shell starts up it reads its startup files and may set environment variables,

command search paths, and command aliases, and executes any commands specified

in these files.

 The original shell was the Bourne shell, sh. Every Unix platform will either have the

Bourne shell, or a Bourne compatible shell available.

 Even though the shell appears not to be doing anything meaningful when there is no

activity at the terminal, it swings into action the moment you key in something.

The following activities are typically performed by the shell in its interpretive cycle:

 The shell issues the prompt and waits for you to enter a command.

 After a command is entered, the shell scans the command line for meta

characters and expands abbreviations (like the * in rm *) to recreate a simplified

command line.

 It then passes on the command line to the kernel for execution.

 The shell waits for the command to complete and normally can’t do any work

while the command is running.

 After the command execution is complete, the prompt reappears and the shell

returns to its waiting role to start the next cycle. You are free to enter another

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 9

command.

1. Wild-Cards

 A pattern is framed using ordinary characters and a meta character (like *)

using well- defined rules.

 The pattern can then be used as an argument to the command, and the shell will

expand it suitably before the command is executed.

 The meta characters that are used to construct the generalized pattern for matching

filenames belong to a category called wild-cards.

The following table lists them:

Wild-card Matches

* Any number of characters including none

? A single character

[ijk] A single character – either an i, j or k

[x-z] A single character that is within the ASCII range of characters x and z

[!ijk] A single character that is not an i, j or k (Not in C shell)

[!x-z] A single character that is not within the ASCII range of the characters x and z (Not in C

Shell)

{pat1,pat2...} Pat1, pat2, etc. (Not in Bourne shell)

The * and ?

 The metacharacter *, is one of the characters of the shell’s wild card set.

 It matches any number of characters (including none).

 To list all files that begin with chap.

$ ls chap*

chap chap01 chap02 chap03 chap04 chap15 chap16 chap17 chapx chapy chapz

 chap* matches the string chap. When the shell encounters this command line, it identifies the *

immediately as a wild card.

 It then looks in the current directory and recreates the command line as below from the

filenames that match the pattern chap*:

ls chap chap01 chap02 chap03 chap04 chap15 chap16 chap17 chapx chapy chapz

 ? matches a single character.

 To list all files whose filenames are six character long and start with chap.

$ ls chap?

chapx chapy chapz

$ ls chap??

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 10

chap01 chap02 chap03 chap04 chap15 chap16 chap17

Matching the Dot

 Both * and ? operate with some restrictions. for example, the * doesn’t match

all files beginning with a . (dot) or the / of a pathname.

 If you wish to list all hidden filenames in your directory having at least three

characters after the dot, the dot must be matched explicitly.

$ ls .???*

.bash_profile .exrc .netscape .profile

 However, if the filename contains a dot anywhere but at the beginning, it need not be

matched explicitly.

 Similarly, these characters don’t match the / in a pathname. So, you cannot use, $cd

/usr?local to change to /usr/local.

The character class

 The character class comprises a set of characters enclosed by the rectangular brackets, [

and], but it matches a single character in the class.

 The pattern [abd] is character class, and it matches a single character – an a,b or d.

Examples:

$ ls chap0[124]

chap01 chap02 chap04

$ls chap[x-z]

chapx chapy chapz

Negating the character class(!)

 You can negate a character class to reverse matching criteria. For example,

*.[!co] - To match all filenames with a single-character extension but not the .c or .o files

[!a-zA-Z]* - To match all filenames that don’t begin with an alphabetic character

2. Removing the special meanings of wild cards.

Escaping and Quoting

 Escaping is providing a \ (backslash) before the wild-card to remove (escape) its special meaning.

 For instance, if we have a file whose filename is chap* (Remember a file in UNIX can be names

with virtually any character except the / and null), to remove the file, it is dangerous to give

command as rm chap*, as it will remove all files beginning with chap.

 Hence to suppress the special meaning of *, use the command rm chap*.

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 11

 To list the contents of the file chap0[1-3], use ,

$cat chap0\[1-3\]

 A filename can contain a whitespace character also. Hence to remove a file

named My Documend.doc, which has a space embedded, a similar reasoning should

be followed:

$rm My\ Document.doc

 Quoting is enclosing the wild-card, or even the entire pattern, within quotes.

Anything within these quotes (barring a few exceptions) are left alone by the shell and

not interpreted.

 When a command argument is enclosed in quotes, the meanings of all enclosed

special characters are turned off.

Examples:

$ echo ‘\’ Displays a \

$ rm ‘chap*’ Removes file chap*

$ rm ‘My Document.doc’ Removes file My Document.doc

3. Three standard files and redirection.

 The shell associates three files with the terminal – two for display and one for the

keyboard.

 These files are streams of characters which many commands see as input and output.

 When a user logs in, the shell makes available three files representing three streams.

Each stream is associated with a default device: -

Standard input: The file (stream) representing input, connected to the keyboard.

Standard output: The file (stream) representing output, connected to the display.

Standard error: The file (stream) representing error messages that emanate from the command or

shell, connected to the display.

Standard input

The standard input can represent three input sources:

 The keyboard, the default source.

 A file using redirection with the < symbol.

 Another program using a pipeline.

How input redirection works:

$ wc < sample.txt

1. On seeing the <, the shell opens the disk file, sample.txt for reading

2. It unplugs the standard input file from its default source and assigns it to sample.txt

3. wc reads from standard input which has earlier been reassigned by the shell to sample.txt

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 12

Standard output

The standard output can represent three possible destinations:

 The terminal, the default destination.

 A file using the redirection symbols > and >>.

 As input to another program using a pipeline.

How output redirection works:

$ wc sample.txt > newfile

1. On seeing the >, the shell opens the disk file, newfile for writing

2. It unplugs the standard output file from its default destination and assigns it to newfile.

3. wc writes to standard output which has earlier been reassigned by the shell to newfile

Standard error:

 A file is opened by referring to its pathname, but subsequent read and write

operations identify the file by a unique number called a file descriptor.

 The kernel maintains a table of file descriptors for every process running in the system.

 The first three slots are generally allocated to the three standard

streams as, 0 – Standard input

1 – Standard

output 2 –

Standard error

These descriptors are implicitly prefixed to the redirection symbols.

4. Connecting commands: Pipe

 With piping, the output of a command can be used as input (piped) to a subsequent command.

Syntax:

$ command1 | command2

 Output from command1 is piped into input for

command2. This is equivalent to, but more efficient than:

$ command1 > temp

$ command2 < temp

$ rm temp

 To count the number of lines and redirect wc’s input so that the filename doesn’t appear in the

output:

$wc –l > user.txt

5

 Using an intermediate file(user.txt), we counted the number of lines.

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 13

 Method of running two commands seperately has 2 disadvantages:

1. For long running commands, this process is slow. The second command cant act unless the

first has completed its job.

2. You need an intermediate file that has to be removed after completion of the job. When

handling large files, temporary files can build up easily and eat up disk space in no time.

 The shell can connect these streams using a special operator, the | (pipe) and avoid creation of

the disk file.

 The pipe is the third source and destination of standard input and standard

output Examples

$ ls -l | wc –l Displays number of file in current directory

$ who | wc –l Displays number of currently logged in users

 In a pipeline, all programs run simultaneously. A pipe has a built in mechanism to control the

flow of the stream.

 Pipe is both being read and written, the reader and writer have to act in unison.

 If one operates faster than the other, then the appropriate driver has to readjust the flow.

5. The grep, egrep.

grep: Searching for a pattern

 grep scans its input for a pattern displays lines containing the pattern, the line numbers or

filenames where the pattern occurs. The command uses the following syntax:

$grep options pattern filename(s)

 grep searches for pattern in one or more filename(s), or the standard input if no filename is

specified.

 The first argument (except the options) is the pattern and the remaining arguments are filenames.

Examples:

$ grep “sales” emp.lst

2233|a. k. Shukla |g. m. |sales |12/12/52|6000

1006|chanchal singhvi |director |sales |03/09/38|6700

1265|s. n. dasgupta |manager |sales |12/09/63|5600

2476|anil Aggarwal |manager |sales |01/05/59|5000

here, grep displays 4 lines containing pattern as “sales” from the file emp.lst.

 grep silently returns the prompt because no pattern as “president” found in file emp.lst.

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 14

$ grep president emp.lst #No quoting necessary here

$ _#No pattern (president) found

 when grep is used with multiple filenames, it displays the filenames along with the output.

$ grep “director” emp1.lst emp2.lst

emp1.lst: 9876|jai sharma |director |production

|12/03/50|7000

emp1.lst: 2365|barun sengupta |director |personnel

|11/05/47|7800 emp1.lst: 1006|chanchal singhvi |director |sales

|03/09/38|6700

emp2.lst: 6521|lalit chowdury |director |marketing

|26/09/45|8200

Here, first column shows file name.

grep options:

The below table shows all the options used by grep.

Option Significance

-i Ignores case for matching

-v Doesn't display lines matching expression

-n Displays line numbers along with lines

-c Displays count of number of occurrences

-l Displays list of filenames only

-e exp Matches multiple patterns

-f filename Takes patterns from file, one per line

-E Treats patterns as an ERE

-F Matches multiple fixed strings

 Ignoring case (-i):

When you look for a name but are not sure of the case, use the -i (ignore) option.

$ grep -i 'agarwal' emp.lst

3564|sudhir Agarwal |executive |personnel |06/07/47|7500

This locates the name Agarwal using the pattern agarwal.

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 15

 Deleting Lines (-v):

The -v option selects all the lines except those containing the pattern.

It can play an inverse role by selecting lines that does not containing the pattern.

$ grep -v 'director' empl.lst

2233|a. k. shukla |g. m. |sales |12/12/52|6000

5678|sumit chakrobarty |d. g. m. |marketing |19/04/43|6000

5423|n. k. gupta |chairman |admin |30/08/56|5400

6213|karuna ganguly |g. m. |accounts |05/06/62|6300

1265|s. n. dasgupta |manager |sales |12/09/63|5600

4290|jayant choudhury |executive |production |07/09/50|6000

2476|anil Aggarwal |manager |sales |01/05/59|5000

3212|shyam saksena | d. g. m. |accounts |12/12/55|6000

3564|sudhir Agarwal |executive |personnel |06/07/47|7500

2345|j. b. saxena |g. m. |marketing |12/03/45|8000

0110|v. k. Agrawal |g. m. |marketing |31/12/40|9000

 Displaying Line Numbers (-n):

The -n(number) option displays the line numbers containing the pattern, along with

the lines.

$ grep -n 'marketing' emp.lst

3: 5678 |sumit chakrobarty |d. g. m. |marketing |19/04/43|6000

11: 6521|lalit chowdury |director |marketing |26/09/45|8200

14: 2345|j. b. saxena |g. m. |marketing |12/03/45|8000

15: 0110|v. k. Agrawal |g. m. |marketing |31/12/40|9000

here, first column displays the line number in emp.lst where pattern is found

 Counting lines containing Pattern (-c):

How many directors are there in the file emp.lst?

The -c(count) option counts the number of lines containing the pattern.

$ grep -c 'director' emp.lst

4

 Matching Multiple Patterns (-e):

With the -e option, you can match the three agarwals by using the grep like this:

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 16

$ grep -e “Agarwal” -e “aggarwal” -e “agrawal” emp.lst

2476|anil aggarwal |manager |sales |01/05/59|5000

3564|sudhir Agarwal |executive |personnel |06/07/47|7500

0110|v. k. agrawal |g. m. |marketing |31/12/40|9000

 Taking patterns from a file (-f):

You can place all the patterns in a separate file, one pattern

per line. Grep uses -f option to take patterns from a file:

$ grep -f patterns.lst emp.lst

9876|jai sharma |director |production |12/03/50|7000

2365|barun sengupta |director |personnel |11/05/47|7800

5423|n. k. gupta |chairman |admin |30/08/56|5400

1006|chanchal singhvi |director |sales |03/09/38|6700

1265|s. n. dasgupta |manager |sales |12/09/63|5600

2476|anil aggarwal |manager |sales |01/05/59|5000

6521|lalit chowdury |director |marketing |26/09/45|8200

Basic Regular Expression (Bre)

 Like the shell's wild-cards which matches similar filenames with a single expression,

grep uses an expression of a different type to match a group of similar patterns.

 Unlike shell's wild-cards, grep uses following set of meta-characters to design an

expression that matches different patterns.

 If an expression uses any of these meta-characters, it is termed as Regular Expression (RE).

The below table shows the BASIC REGULAR EXPRESSION (BRE) character set-

Symbols or Expression Matches

* Zero or more occurrences of the previous character

g* Nothing or g, gg, ggg, gggg, etc.

. A single character

.* Nothing or any number of characters

[pqr] A single character p, q or r

[c1-c2] A single character withing ASCII range shown by c1 and c2

[0-9] A digit between 0 and 9

[^pqr] A single character which is not a p, q or r

[^a-zA-Z] A non-alphabetic character

^pat Pattern pat at beginning of line

pat$ Pattern pat at end of line

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 17

^bash$ A bash as the only word in line

^$ Lines containing nothing

 The character class

 A RE lets you specify a group of characters enclosed within a pair of rectangular brackets, [],

in which case the match is performed for a single character in the group.

$ grep '[aA]g[ar][ar]wal' emp.lst

3564|sudhir Agarwal |executive |personnel |06/07/47|7500

0110|v. k. Agrawal |g. m. |marketing |31/12/40|9000

The *

 The * (asterisk) refers to the immediately preceding character.

 Here, it indicates that the previous character can occur many times, or not at all.

$ grep '[aA]gg*[ar][ar]wal' emp.lst

2476|anil Aggarwal |manager |sales |01/05/59|5000

3564|sudhir Agarwal |executive |personnel |06/07/47|7500

0110|v. k. Agrawal |g. m. |marketing |31/12/40|9000

The Dot

 A . matches a single character.

 The pattern 2... matches a four-character patten beginning with a 2.

 The pattern .* matches any number of characters, or none.

$ grep 'j.*saxena' emp.lst

2345|j. b. saxena |g. m. |marketing |12/03/45|8000

Specifying pattern locations (^ and $)

^ (carat) – For matching at the beginning of a line

$ (dollar) – For matching at the end of a line

$ grep '^2' emp.lst

2233|a. k. shukla |g. m. |sales |12/12/52|6000

2365|barun sengupta |director |personnel |11/05/47|7800

2476|anil Aggarwal |manager |sales |01/05/59|5000

Module 2_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 18

2345|j. b. saxena |g. m. |marketing |12/03/45|8000

$ grep '7...$' emp.lst

9876|jai sharma |director |production |12/03/50|7000

2365|barun sengupta |director |personnel |11/05/47|7800

3564|sudhir Agarwal |executive |personnel |06/07/47|7500

6. Extended Regular Expression (Ere) and Egrep

 ERE make it possible to match dissimilar patterns with a single expression.

 grep uses ERE characters with -E option.

 egrep is another alternative to use all the ERE characters without -E option. This ERE

uses some additional characters set shown in below table-

Expression Significance

ch+ Matches one or more occurrences of character ch

ch? Matches zero or one occurrence of character ch

exp1 | exp2 Matches exp1 or exp2

GIF | JPEG Matches GIF or JPEG

(x1|x2)x3 Matches x1x3 or x2x3

(hard|soft)ware Matches hardware or software

The + and ?

+ - Matches one or more occurrences of the previous character

? - Matches zero or one occurrence of the previous character.

$ grep -E “[aA]gg?arwal” emp.lst

2476|anil aggarwal |manager |sales |01/05/59|5000

3564|sudhir Agarwal |executive |personnel |06/07/47|7500

Matching Multiple Patterns(|, (and))

$ grep -E 'sengupta|dasgupta' emp.lst

2365|barun sengupta |director |personnel |11/05/47|7800

1265|s. n. dasgupta |manager |sales |12/09/63|5600

$ grep -E '(sen|das)gupta' emp.lst

2365|barun sengupta |director |personnel |11/05/47|7800

1265|s. n. dasgupta |manager |sales |12/09/63|5600

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 1

Chapter 3: SHELL PROGRAMMING

1. Ordinary and environment variables.

2. The .profile.

3. Read and readonly commands

4. Command line arguments

5. . exit and exit status of a command.

6. Logical operators for conditional execution.

7. The test command and its shortcut.

8. The if, while, for and case control statements.

9. The set and shift commands and handling positional parameters.

10. The here (<<) document and trap command.

11. Simple shell program examples.

1. Ordinary and environment variables.

A local variable is a variable that is present within the current instance of the shell. It is not

available to program that are started by the shell. They are set at command prompt.

VARIABLE NAMES:

 A variable is a character string to which we assign a value. The value assigned could be a

number, text, filename, device, or any other type of data.

 A variable is nothing more than a pointer to the actual data. The shell enables you to create,

assign, and delete variables.

 The name of a variable can contain only letters(a to z or A to Z),numbers(0 to 9) or the

underscore character(_).

 By convention, Unix shell variables would have their names in UPPERCASE

 The following examples are valid variable names:-

VAR_1

VAR_2

TOKEN_A

 DEFINING VARIABLE:

 Variable are defiened as follows:

 Variable_name= variable_value

 For example

NAME=”Sumithabha Das”

 ACCESSING VARIABLES:

 To access the value stored in a variable, prefix its name with the dollar sign($).

 For example following script would access the value of defined variable NAME and would

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 2

print it on STDOUT

#!/bin/sh

NAME=”Sumitabha Das”

Echo $NAME

ENVIRONMENT VARIABLES:

An environment variables that is available to any child process of the shell. Some programs need

environment variables in order to function correctly. Usually a shell script defines only those

environment variables that are needed by the programs that it runs

 SHELL: points to the shell defined as default.

 DISPLAY: contains the identifier for the display that X11 programs should use by default.

 HOME: Indicates the home directory of the current user default argument for the cd built in

command

 IFS: Indicates the Internal Field Separator that is used by the parser for word splitting after

expansion.

 PATH: Indicates search path for commands .It is a colon separated list of directories in

which shell looks the command.

 PWD: Indicates the current working directory as set by the cd command.

 RANDOM: Generates a random interger between 0 and 32767 each time it s referenced.

 SHLVL: Increments by one each time an instance of bash is created.

 UID: Expands to the numeric user ID of the current user initialized at shell prompt.

Following is the sample example showing few environment variables

PS1(Prompt String one) and Environment variables

The characters that the shell displays as your command prompt are stored in the variables PS1.You

can change this variable to be anything you want .As soon as you change it it’ll be used by the shell

from that point on.

For example, if you issued the command:

Your prompt would become=>

When you issue a command that is incomplete, the shell will display a secondary prompt and wait

$ echo $HOME

/root

]$ echo $DISPLAY

$ echo $TERM

xterm
$ ech $PATH

/usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin

$

$PS1=’=>’

=>
=>

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 3

for you to complete the command and hit Enter again.

The default secondary prompt is > (the greater than sign), but can be changed by re-defining the

PS2 shell variable:

Following is the example which uses the default secondary prompt:

 $ PS=’-->’

 $ echo “this is a

-->test”

2. The .profile File

 The file /etc/profile is maintained by the system administrator of your UNIX machine and contains

shell initialization information required by all users on a system.

 The file .profile is under your control .you can add as much shell customization information as you

want to this file. The minimum set fo information that you need to configure includes.

 The type of terminal you are using

o A list of directories in which to locate commands

o A list of variables effecting look and feel of you terminal.

 You can check your .profile available in your home directory. Open it using vieditor and check all

the variable set for your environment

Shell scripts

 When a group of commands have to be executed regularly thry should be stored in a file and the file

itself executed as a shell script or shell program.

Structure of shell script

#! /bin/sh

script.sh: Sample shell script

echo “Todays date: ‘date’ ”

echo “This month’s calendar:”

cal ‘date’ “+%m 20%y”

 echo “My shell: $SHELL”

$ echo “this is a

>test”

This is a

test

$

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 4

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 5

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 6

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 7

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 8

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 9

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 10

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 11

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 12

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 13

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 14

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 15

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 16

Module 2_UNIX Programming (18CS56) 2021-2022

Prof. Mamatha B Dept of CSE Page 17

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 1

Chapter 1: UNIX File APIs

1. General File APIs

2. File and Record Locking

3. Directory File APIs

4. Device File APIs

5. FIFO File APIs

6. Symbolic Link File APIs

1. General file API’s

Files in a UNIX and POSIX system may be any one of the following types:

 Regular file

 Directory file

 FIFO file

 Block device file

 Character device file

 Symbolic link file

There are special API’s to create these types of files. There is a set of Generic API’s that can be used to

manipulate and create more than one type of files. These API’s are:

open

 This is used to establish a connection between a process and a file i.e. it is used to open an existing

file for data transfer function or else it may be also be used to create a new file.

 The returned value of the open system call is the file descriptor (row number of the file table), which

contains the inode information.

 The prototype of open function is

#include<sys/types.h>
#include<sys/fcntl.h>

int open(const char *pathname, int accessmode, mode_t permission);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 2

 If successful, open returns a nonnegative integer representing the open file descriptor.

 If unsuccessful, open returns –1.

 The first argument is the name of the file to be created or opened. This may be an absolute pathname

or relative pathname.

 If the given pathname is symbolic link, the open function will resolve the symbolic link reference to

a non symbolic link file to which it refers.

 The second argument is access modes, which is an integer value that specifies how actually the file

should be accessed by the calling process.

 Generally the access modes are specified in <fcntl.h>. Various access modes are:

There are other access modes, which are termed as access modifier flags, and one or more of the

following can be specified by bitwise-ORing them with one of the above access mode flags to alter the

access mechanism of the file.

O_RDONLY - open for reading file only

O_WRONLY - open for writing file only

O_RDWR - opens for reading and writing file.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 3

O_APPEND - Append data to the end of file.

O_CREAT - Create the file if it doesn’t exist

O_EXCL - Generate an error if O_CREAT is also specified and the file already exists.

O_TRUNC - If file exists discard the file content and set the file size to zero bytes.

O_NONBLOCK - Specify subsequent read or write on the file should be non-blocking.

O_NOCTTY - Specify not to use terminal device file as the calling process control terminal.

To illustrate the use of the above flags, the following example statement opens a file called

/usr/divya/usp for read and write in append mode:

int fd=open(“/usr/divya/usp”,O_RDWR | O_APPEND,0);

 If the file is opened in read only, then no other modifier flags can be used.

 If a file is opened in write only or read write, then we are allowed to use any modifier flags along with them.

 The third argument is used only when a new file is being created. The symbolic names for file

permission are given in the table in the previous page.

creat

 This system call is used to create new regular files.

 The prototype of creat is

#include <sys/types.h>
#include<unistd.h>

int creat(const char *pathname, mode_t mode);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 4

 Returns: file descriptor opened for write-only if OK, -1 on error.

 The first argument pathname specifies name of the file to be created.

 The second argument mode_t, specifies permission of a file to be accessed by owner group and others.

 The creat function can be implemented using open function as:

#define creat(path_name, mode)

open (pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

read

 The read function fetches a fixed size of block of data from a file referenced by a given file descriptor.

 The prototype of read function is:

 If successful, read returns the number of bytes actually read.

 If unsuccessful, read returns –1.

 The first argument is an integer, fdesc that refers to an opened file.

 The second argument, buf is the address of a buffer holding any data read.

 The third argument specifies how many bytes of data are to be read from the file.

 The size_t data type is defined in the <sys/types.h> header and should be the same as unsigned int.

 There are several cases in which the number of bytes actually read is less than the amount requested:

• When reading from a regular file, if the end of file is reached before the requested number of bytes has

• been read. For example, if 30 bytes remain until the end of file and we try to read 100 bytes, read

returns

• 30. The next time we call read, it will return 0 (end of file).

• When reading from a terminal device. Normally, up to one line is read at a time.

• When reading from a network. Buffering within the network may cause less than the requested

amount to be returned.

• When reading from a pipe or FIFO. If the pipe contains fewer bytes than requested, read will return

only what is available.

#include<sys/types.h>
#include<unistd.h>

size_t read(int fdesc, void *buf, size_t nbyte);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 5

write

 The write system call is used to write data into a file.

 The write function puts data to a file in the form of fixed block size referred by a given file descriptor.

 The prototype of write function is:

 If successful, write returns the number of bytes actually written.

 If unsuccessful, write returns –1.

 The first argument, fdesc is an integer that refers to an opened file.

 The second argument, buf is the address of a buffer that contains data to be written.

 The third argument, size specifies how many bytes of data are in the buf argument.

 The return value is usually equal to the number of bytes of data successfully written to a file. (size value)

close

 The close system call is used to terminate the connection to a file from a process.

 The prototype of the close is

 If successful, close returns 0.

 If unsuccessful, close returns –1.

 The argument fdesc refers to an opened file.

 Close function frees the unused file descriptors so that they can be reused to reference other files.

This is important because a process may open up to OPEN_MAX files at any time and the close

function allows a process to reuse file descriptors to access more than OPEN_MAX files in the

course of its execution.

 The close function de-allocates system resources like file table entry and memory buffer allocated to

hold the read/write.

fcntl

 The fcntl function helps a user to query or set flags and the close-on-exec flag of any file descriptor.

 The prototype of fcntl is

#include<fcntl.h>

int fcntl(int fdesc, int cmd, …);

#include<sys/types.h>
#include<unistd.h>
ssize_t write(int fdesc, const void *buf, size_t size);

#include<unistd.h> int
close(int fdesc);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 6

 The first argument is the file descriptor.

 The second argument cmd specifies what operation has to be performed.

 The third argument is dependent on the actual cmd value.

 The possible cmd values are defined in <fcntl.h> header.

cmd value Use

F_GETFL Returns the access control flags of a file descriptor fdesc

F_SETFL Sets or clears access control flags that are specified in the third argument to

 fcntl. The allowed access control flags are O_APPEND & O_NONBLOCK

F_GETFD Returns the close-on-exec flag of a file referenced by fdesc. If a return value is

 zero, the flag is off; otherwise on.

F_SETFD Sets or clears the close-on-exec flag of a fdesc. The third argument to fcntl is

 an integer value, which is 0 to clear the flag, or 1 to set the flag

F_DUPFD Duplicates file descriptor fdesc with another file descriptor. The third

 argument to fcntl is an integer value which specifies that the duplicated file

 descriptor must be greater than or equal to that value. The return value of

 fcntl is the duplicated file descriptor

 The fcntl function is useful in changing the access control flag of a file descriptor.

 For example: after a file is opened for blocking read-write access and the process needs to change the

access to non-blocking and in write-append mode, it can call:

int cur_flags=fcntl(fdesc,F_GETFL);

int rc=fcntl(fdesc,F_SETFL,cur_flag | O_APPEND | O_NONBLOCK);

The following example reports the close-on-exec flag of fdesc, sets it to on afterwards:

cout<<fdesc<<”close-on-

exec”<<fcntl(fdesc,F_GETFD)<<endl;

(void)fcntl(fdesc,F_SETFD,1); //turn on close-on-exec flag

The following statements change the standard input og a process to a file called FOO:

int fdesc=open(“FOO”,O_RDONLY); //open FOO for read

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 7

close(0); //close standard input

if(fcntl(fdesc,F_DUPFD,0)==-1)

perror(“fcntl”); //stdin from FOO now

char buf[256];

int rc=read(0,buf,256); //read data from FOO

The dup and dup2 functions in UNIX perform the same file duplication function

as fcntl. They can be implemented using fcntl as:

#define dup(fdesc) fcntl(fdesc, F_DUPFD,0)

#define dup2(fdesc1,fd2) close(fd2),fcntl(fdesc,F_DUPFD,fd

2)

 lseek

 The lseek function is also used to change the file offset to a different value.

 Thus lseek allows a process to perform random access of data on any opened file.

 The prototype of lseek is

#include <sys/types.h> #include

<unistd.h>

off_t lseek(int fdesc, off_t pos, int whence);

On success it returns new file offset, and –1 on error.

 The first argument fdesc, is an integer file descriptor that refer to an opened file.

 The second argument pos, specifies a byte offset to be added to a reference location in deriving the

new file offset value.

 The third argument whence, is the reference location.

Whence value Reference location

SEEK_CUR Current file pointer address

SEEK_SET The beginning of a file

SEEK_END The end of a file

 They are defined in the <unistd.h> header.

 If an lseek call will result in a new file offset that is beyond the current end-of-file, two outcomes

possible are: o If a file is opened for read-only, lseek will fail.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 8

• If a file is opened for write access, lseek will succeed.

• The data between the end-of-file and the new file offset address will be initialised

with NULL characters.

link

 The link function creates a new link for the existing file.

 The prototype of the link function is

 If successful, the link function returns 0.

 If unsuccessful, link returns –1.

 The first argument cur_link, is the pathname of existing file.

 The second argument new_link is a new pathname to be

assigned to the same file.

 If this call succeeds, the hard link count will be increased by 1.

 The UNIX ln command is implemented using the link API.

#include<iostream.h>

#include<stdio.h>

#include<unistd.h>

int main(int argc, char* argv)

{

if(argc!=3)

{

cerr<<”usage:”<<argv[0]<<”<src_file><dest_file>\n”; return 0;

}

if(link(argv[1],argv[2])==-1)

{

perror(“link”);

return 1;

}

return 0;

}

unlink

 The unlink function deletes a link of an existing file.

 This function decreases the hard link count attributes of the named file, and removes the file name

#include <unistd.h>

int link(const char *cur_link, const char *new_link);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 9

entry of the link from directory file.

 A file is removed from the file system when its hard link count is zero and no process has any file

descriptor referencing that file.

 The prototype of unlink is

#include <unistd.h>

int unlink(const char * cur_link);

 If successful, the unlink function returns 0.

 If unsuccessful, unlink returns –1.

 The argument cur_link is a path name that references an existing file.

 ANSI C defines the rename function which does the similar unlink operation.

 The prototype of the rename function is:

 The UNIX mv command can be implemented using the link and unlink APIs as shown:

#include <iostream.h>

#include

<unistd.h>

#include<string.h

>

int main (int argc, char *argv[])

{

if (argc != 3 || strcmp(argv[1],argcv[2]))

cerr<<”usage:”<<argv[0]<<””<old_link><new_link>\

n”;

else if(link(argv[1],argv[2]) == 0)

return unlink(argv[1]);

return 1;

}

#include<stdio.h>

int rename(const char * old_path_name,const char * new_path_name);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 10

stat, fstat

 The stat and fstat function retrieves the file attributes of a given file.

 The only difference between stat and fstat is that the first argument of a stat is a file pathname, where

as the first argument of fstat is file descriptor.

 The prototypes of these functions are

 The second argument to stat and fstat is the address of a struct stat-typed variable which is defined in

the <sys/stat.h> header.

 Its declaration is as follows:

struct stat

{

dev_t st_dev; /* file system ID */

ino_t st_ino; /* file inode number */

mode_t st_mode; /* contains file type and permission

*/

nlink_t st_nlink; /* hard link count */

uid_t st_uid; /* file user ID */

gid_t st_gid; /* file group ID */

dev_t st_rdev; /*contains major and minor

device#*/

off_t st_size; /* file size in bytes */

time_t st_atime; /* last access time */

time_t st_mtime; /* last modification time */

time_t st_ctime; /* last status change time */

};

#include<sys/stat.h>
#include<unistd.h>

int stat(const char *pathname, struct stat *statv);
int fstat(const int fdesc, struct stat *statv);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 11

 The return value of both functions is

- 0 if they succeed

- 1 if they fail

- errno contains an error status code

 The lstat function prototype is the same as that of stat:

 We can determine the file type with the macros as shown.

access

 The access system call checks the existence and access permission of user to a named file.

 The prototype of access function is:

 On success access returns 0, on failure it returns –1.

 The first argument is the pathname of a file.

 The second argument flag, contains one or more of the following bit flag .

 The flag argument value to an access call is composed by bitwise-ORing one or more of the above bit

flags as shown:

int rc=access(“/usr/divya/usp.txt”,R_OK | W_OK);

int lstat(const char * path_name, struct stat* statv);

macro
S_ISREG()

S_ISDIR()

S_ISCHR()

S_ISBLK()
S_ISFIFO()

S_ISLNK()

S_ISSOCK()

Type of file
regular file

directory file

character special file
block special file

pipe or FIFO

symbolic link

socket

Bit flag

F_OK

R_OK
W_OK

X_OK

Uses

Checks whether a named file exist

Test for read permission

Test for write permission

Test for execute permission

#include<unistd.h>

int access(const char *path_name, int flag);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 12

 example to check whether a file exists:

if(access(“/usr/divya/usp.txt”,

F_OK)==-1) printf(“file does not

exists”);

else

printf(“file exists”);

chmod, fchmod

 The chmod and fchmod functions change file access permissions for owner, group & others as

well as the set_UID, set_GID and sticky flags.

 A process must have the effective UID of either the super-user/owner of the file.

 The prototypes of these functions are

 The pathname argument of chmod is the path name of a file whereas the fdesc argument of fchmod

is the file descriptor of a file.

 The chmod function operates on the specified file, whereas the fchmod function operates on a file

that has already been opened.

 To change the permission bits of a file, the effective user ID of the process must be equal to the

owner ID of the file, or the process must have super-user permissions. The mode is specified as

the bitwise OR of the constants shown below.

Mode Description

S_ISUID set-user-ID on execution

S_ISGID set-group-ID on execution

S_ISVTX saved-text (sticky bit)

S_IRWXU read, write, and execute by user (owner)

#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
int chmod(const char *pathname, mode_t flag); int fchmod(int fdesc, mode_t flag);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 13

S_IRUSR read by user (owner)

S_IWUSR write by user (owner)

S_IXUSR execute by user (owner)

S_IRWXG read, write, and execute by group

S_IRGRP read by group

S_IWGRP write by group

S_IXGRP execute by group

S_IRWXO read, write, and execute by other (world)

S_IROTH read by other (world)

S_IWOTH write by other (world)

S_IXOTH execute by other (world)

chown, fchown, lchown

 The chown functions changes the user ID and group ID of files.

 The path_name argument is the path name of a file.

 The uid argument specifies the new user ID to be assigned to the file.

 The gid argument specifies the new group ID to be assigned to the file.

/* Program to illustrate chown function */

#include<iostream.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<unistd.h>

#include<pwd.h>

int main(int argc, char *argv[])

{

if(argc>3)

{

cerr<<”usage:”<<argv[0]<<”<usr_name><file> \n”;

return 1;

The prototypes of these functions are

#include<unistd.h>
#include<sys/types.h>

int chown(const char *path_name, uid_t uid, gid_t gid); int fchown(int fdesc, uid_t uid, gid_t gid);
int lchown(const char *path_name, uid_t uid, gid_t gid);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 14

}

struct passwd *pwd = getpwuid(argv[1]) ;

uid_t UID = pwd ? pwd -> pw_uid : -1 ;

struct stat

statv;

if (UID == (uid_t)-1)

cerr <<“Invalid user name”; else for (int i

= 2; i < argc ; i++)

if (stat(argv[i], &statv)==0)

{

if (chown(argv[i], UID,statv.st_gid)) perror

(“chown”);

}

return 0;

}

else

perror (“stat”);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 10

 The above program takes at least two command line arguments:

• The first one is the user name to be assigned to files

• The second and any subsequent arguments are file path names.

 The program first converts a given user name to a user ID via getpwuid function. If that succeeds, the

program processes each named file as follows: it calls stat to get the file group ID, then it calls chown

to change the file user ID. If either the stat or chown fails, error is displayed.

utime Function

 The utime function modifies the access time and the modification time stamps of a file.

 The prototype of utime function is

 On success it returns 0, on failure it returns –1.

 The path_name argument specifies the path name of a file.

 The times argument specifies the new access time and modification time for the file.

 The struct utimbuf is defined in the <utime.h> header as:

struct utimbuf

{

time_t actime; /* access time */

time_t modtime; /* modification time */

}

 The time_t datatype is an unsigned long and its data is the number of the seconds elapsed since the

birthday of UNIX : 12 AM , Jan 1 of 1970.

 If the times (variable) is specified as NULL, the function will set the named file access and

modification time to the current time.

 If the times (variable) is an address of the variable of the type struct utimbuf, the function will set the

file access time and modification time to the value specified by the variable.

#include<sys/types.h>
#include<unistd.h>
#include<utime.h>

int utime(const char *path_name, struct utimbuf *times);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 11

2. File and Record Locking

 Multiple processes performs read and write operation on the same file concurrently.

 This provides a means for data sharing among processes, but it also renders difficulty for any process in

determining when the other process can override data in a file.

 So, in order to overcome this drawback UNIX and POSIX standard support file locking mechanism.

 File locking is applicable for regular files.

 Only a process can impose a write lock or read lock on either a portion of a file or on the entire file.

 The differences between the read lock and the write lock is that when write lock is set, it prevents the other

process from setting any over-lapping read or write lock on the locked file.

 Similarly when a read lock is set, it prevents other processes from setting any overlapping write locks on

the locked region.

 The intension of the write lock is to prevent other processes from both reading and writing the locked

region while the process that sets the lock is modifying the region, so write lock is termed as “Exclusive

lock”.

 The use of read lock is to prevent other processes from writing to the locked region while the process that

sets the lock is reading data from the region.

 Other processes are allowed to lock and read data from the locked regions. Hence a read lock is also called

as “shared lock “.

 File lock may be mandatory if they are enforced by an operating system kernel.

 If a mandatory exclusive lock is set on a file, no process can use the read or write system calls to access the

data on the locked region.

 These mechanisms can be used to synchronize reading and writing of shared files by multiple processes.

 If a process locks up a file, other processes that attempt to write to the locked regions are blocked until the

former process releases its lock.

 Problem with mandatory lock is – if a runaway process sets a mandatory exclusive lock on a file and never

unlocks it, then, no other process can access the locked region of the file until the runway process is killed

or the system has to be rebooted.

 If locks are not mandatory, then it has to be advisory lock.

 A kernel at the system call level does not enforce advisory locks.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 12

 This means that even though a lock may be set on a file, no other processes can still use the read and write

functions to access the file.

 To make use of advisory locks, process that manipulate the same file must co-operate such that

they follow the given below procedure for every read or write operation to the file.

1. Try to set a lock at the region to be accesses. If this fails, a process can either wait for

the lock request to become successful.

2. After a lock is acquired successfully, read or write the locked region.

3. Release the lock.

 If a process sets a read lock on a file, for example from address 0 to 256, then sets a write lock on the file

from address 0 to 512, the process will own only one write lock on the file from 0 to 512, the previous read

lock from 0 to 256 is now covered by the write lock and the process does not own two locks on the region

from 0 to 256. This process is called “Lock Promotion”.

 Furthermore, if a process now unblocks the file from 128 to 480, it will own two write locks on the file:

one from 0 to 127 and the other from 481 to 512. This process is called “Lock Splitting”.

 UNIX systems provide fcntl function to support file locking. By using fcntl it is possible to impose read or

write locks on either a region or an entire file.

 The prototype of fcntl is

 The first argument specifies the file descriptor.

 The second argument cmd_flag specifies what operation has to be performed.

 If fcntl is used for file locking then it can values as

F_SETLK sets a file lock, do not block if this cannot succeed immediately.

F_SETLKW sets a file lock and blocks the process until the lock is acquired.

F_GETLK queries as to which process locked a specified region of file.

 For file locking purpose, the third argument to fctnl is an address of a struct flock type variable.

 This variable specifies a region of a file where lock is to be set, unset or queried.

#include<fcntl.h>

int fcntl(int fdesc, int cmd_flag,);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 13

struct flock

{

short l_type; /* what lock to be set or to unlock file */

short l_whence; /* Reference address for the next field */

off_t l_start ; /*offset from the l_whence reference

addr*/

off_t l_len ; /*how many bytes in the locked region */

pid_t l_pid ; /*pid of a process which has locked the

file */

};

 The l_type field specifies the lock type to be set or unset.

 The possible values, which are defined in the <fcntl.h> header, and their uses are:

l_type value Use

F_RDLCK Set a read lock on a specified region

F_WRLCK Set a write lock on a specified region

F_UNLCK Unlock a specified region

 The l_whence, l_start, and l_len define a region of a file to be locked or unlocked.

 The possible values of l_whence and their uses are:

l_whence value Use

SEEK_CUR

The l_start value is added to current file pointer

address

SEEK_SET The l_start value is added to byte 0 of the file

SEEK_END The l_start value is added to the end of the file

 A lock set by the fcntl API is an advisory lock but we can also use fcntl for mandatory locking purpose

with the following attributes set before using fcntl

1. Turn on the set-GID flag of the file.

2. Turn off the group execute right permission of the file.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 14

 In the given example program we have performed a read lock on a file “divya” from the 10th byte to 25th

byte.

Example Program

#include <unistd.h>

#include<fcntl.h> int main ()

{

int fd;

struct flock lock;

fd=open(“divya”,O_RDONLY);

lock.l_type=F_RDLCK;

lock.l_whence=0; lock.l_start=10;

lock.l_len=15;

fcntl(fd,F_SETLK,&lock);

}

3. Directory File API’s

 A Directory file is a record-oriented file, where each record stores a file name and the inode number of a

file that resides in that directory.

 Directories are created with the mkdir API and deleted with the rmdir API.

 The prototype of mkdir is

 The first argument is the path name of a directory file to be created.

 The second argument mode, specifies the access permission for the owner, groups and others to be assigned

to the file. This function creates a new empty directory.

 The entries for “.” and “..” are automatically created. The specified file access permission,

mode, are modified by the file mode creation mask of the process.

 To allow a process to scan directories in a file system independent manner, a directory record is defined as

struct dirent in the <dirent.h> header for UNIX.

 Some of the functions that are defined for directory file operations in the above header are

#include<sys/stat.h>
#include<unistd.h>

int mkdir(const char *path_name, mode_t mode);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 15

#include<sys/types.h>

#if defined (BSD)&&!_POSIX_SOURCE

#include<sys/dir.h>

typedef struct direct Dirent;

#else

#include<dirent.h>

typedef struct direct Dirent;

#endif

DIR *opendir(const char *path_name);

Dirent *readdir(DIR *dir_fdesc);

int closedir(DIR *dir_fdesc);

void rewinddir(DIR *dir_fdsec);

The uses of these functions are

Function Use

opendir Opens a directory file for read-only. Returns a file handle dir * for future

 reference of the file.

readdir Reads a record from a directory file referenced by dir-fdesc and returns that

 record information.

rewinddir Resets the file pointer to the beginning of the directory file referenced by dir-

 fdesc. The next call to readdir will read the first record from the file.

closedir closes a directory file referenced by dir-fdesc.

 An empty directory is deleted with the rmdir API.

 The prototype of rmdir is

 UNIX systems have defined additional functions for random access of directory file records.

Function Use

telldir Returns the file pointer of a given dir_fdesc

seekdir Changes the file pointer of a given dir_fdesc to a specified address

#include<unistd.h>

int rmdir (const char * path_name);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 16

The following list_dir.C program illustrates the uses of the mkdir, opendir, readdir, closedir and rmdir APIs:

#include<iostream.

h>

#include<stdio.h>

#include<sys/types.h

>

#include<unistd.h>

#include<string.h>

#include<sys/stat.h>

#if defined(BSD) && !_POSIX_SOURCE

#include<sys/dir.h>

typedef struct dirent Dirent;

#else

#endif

#include<dirent.h>

typedef struct dirent Dir

int main(int agc, char* argv[])

{

Dirent* dp; DIR*

dir_fdesc; while(--argc>0)

{

if(!(dir_fdesc=opendir(*++argv)))

{

if(mkdir(*argv,S_IRWXU | S_IRWXG |

S_IRWXO)==-1) perror("opendir");

continue;

}

for(int i=0;i<2;i++)

for(int cnt=0;dp=readdir(dir_fdesc);)

{

if(i) cout<<dp->d_name<<endl;

if(strcmp(dp->d_name,".") && strcmp(dp->d_name,"..")) cnt++;

}

if(!cnt)

{

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 17

rmdir(*argv); break;

}

rewinddir(dir_fdesc);

}

closedir(dir_fdesc);

}

}

4. Device file APIs

 Device files are used to interface physical device with application programs.

 A process with superuser privileges to create a device file must call the mknod API.

 The user ID and group ID attributes of a device file are assigned in the same manner as for regular files.

 When a process reads or writes to a device file, the kernel uses the major and minor device numbers of a

file to select a device driver function to carry out the actual data transfer.

 Device file support is implementation dependent. UNIX System defines the mknod API to create device files.

 The prototype of mknod is

 The first argument pathname is the pathname of a device file to be created.

 The second argument mode specifies the access permission, for the owner, group and others, also

S_IFCHR or S_IBLK flag to be assigned to the file.

 The third argument device_id contains the major and minor device number.

 Example

mknod(“SCSI5”,S_IFBLK | S_IRWXU | S_IRWXG | S_IRWXO,(15<<8) | 3);

 The above function creates a block device file “divya”, to which all the three i.e. read, write and execute

permission is granted for user, group and others with major number as 8 and minor number 3.

 On success mknod API returns 0 , else it returns -1

The following test_mknod.C program illustrates the use of the mknod, open, read, write and close APIs

on a block device file.

#include<iostream.

h>

#include<sys/stat.h>
#include<unistd.h>

int mknod(const char* path_name, mode_t mode, int device_id);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 18

#include<stdio.h>

#include<stdlib.h>

#include<sys/types.h

>

#include<unistd.h>

#include<fcntl.h>

#include<sys/stat.h

>

int main(int argc, char* argv[])

{

if(argc!=4)

{

cout<<"usage:"<<argv[0]<<"<file><major_no><minor_no>"; return 0;

}

int major=atoi(argv[2],minor=atoi(argv[3]);

(void) mknod(argv[1], S_IFCHR | S_IRWXU | S_IRWXG | S_IRWXO, (major<<8) | minor);

int rc=1,fd=open(argv[1],O_RDW | O_NONBLOCK | O_NOCTTY); char buf[256];

while(rc && fd!=-1) if((rc=read(fd,buf,sizeof(buf)))<0)

perror("read");

else if(rc) cout<<buf<<endl;

close(fd);

}

5. FIFO file API’s

 FIFO files are sometimes called named pipes.

 Pipes can be used only between related processes when a common ancestor has created the pipe.

 Creating a FIFO is similar to creating a file.

 Indeed the pathname for a FIFO exists in the file system.

 The prototype of mkfifo is

#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>

int mkfifo(const char *path_name, mode_t mode);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 19

 The first argument pathname is the pathname(filename) of a FIFO file to be created.

 The second argument mode specifies the access permission for user, group and others and as well as the

S_IFIFO flag to indicate that it is a FIFO file.

 On success it returns 0 and on failure it returns –1.

 Example

mkfifo(“FIFO5”,S_IFIFO | S_IRWXU | S_IRGRP | S_ROTH);

 The above statement creates a FIFO file “divya” with read-write-execute permission for user and only

read permission for group and others.

 Once we have created a FIFO using mkfifo, we open it using open.

 Indeed, the normal file I/O functions (read, write, unlink etc) all work with FIFOs.

 When a process opens a FIFO file for reading, the kernel will block the process until there is another

process that opens the same file for writing.

 Similarly whenever a process opens a FIFO file write, the kernel will block the process until another

process opens the same FIFO for reading.

 This provides a means for synchronization in order to undergo inter-process communication.

 If a particular process tries to write something to a FIFO file that is full, then that process will be blocked

until another process has read data from the FIFO to make space for the process to write.

 Similarly, if a process attempts to read data from an empty FIFO, the process will be blocked until another

process writes data to the FIFO.

 From any of the above condition if the process doesn’t want to get blocked then we should specify

O_NONBLOCK in the open call to the FIFO file.

 If the data is not ready for read/write then open returns –1 instead of process getting blocked.

 If a process writes to a FIFO file that has no other process attached to it for read, the kernel will send

SIGPIPE signal to the process to notify that it is an illegal operation.

 Another method to create FIFO files (not exactly) for inter-process communication is to use the pipe system

call.

 The prototype of pipe is

#include<unistd.h>

int pipe(int fds[2]);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 20

 Returns 0 on success and –1 on failure.

 If the pipe call executes successfully, the process can read from fd[0] and write to fd[1]. A single process

with a pipe is not very useful. Usually a parent process uses pipes to communicate with its children.

The following test_fifo.C example illustrates the use of mkfifo, open, read, write and close APIs for a FIFO file:

#include<iostream.h>

#include<stdio.h>

#include<sys/types.h

>

#include<unistd.h>

#include<fcntl.h>

#include<sys/stat.h>

#include<string.h>

#include<errno.h>

int main(int argc,char* argv[])

{

if(argc!=2 && argc!=3)

{

cout<<"usage:"<<argv[0]<<"<file> [<arg>]"; return 0;

}

int fd;

char buf[256];

(void) mkfifo(argv[1], S_IFIFO | S_IRWXU | S_IRWXG | S_IRWXO); if(argc==2)

{

}

else

{

}

close(fd

);

}

fd=open(argv[1],O_RDONLY | O_NONBLOCK);

while(read(fd,buf,sizeof(buf))==-1 && errno==EAGAIN)

sleep(1); while(read(fd,buf,sizeof(buf))>0)

cout<<buf<<endl;

fd=open(argv[1],O_WRONLY);

write(fd,argv[2],strlen(argv[2]));

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 21

6. Symbolic Link File API’s

 A symbolic link is an indirect pointer to a file, unlike the hard links which pointed directly to the inode of the

file.

 Symbolic links are developed to get around the limitations of hard links.

 Symbolic links can link files across file systems.

- Symbolic links can link directory files

- Symbolic links always reference the latest version of the files to which they link

- There are no file system limitations on a symbolic link and what it points to and anyone

can create a symbolic link to a directory.

- Symbolic links are typically used to move a file or an entire directory hierarchy to some other

location on a system.

- A symbolic link is created with

the symlink.

- The prototype is

 The org_link and sym_link arguments to a sym_link call specify the original file path name and the

symbolic link path name to be created.

/* Program to illustrate symlink function */

#include<unistd.h>

#include<sys/types.h

> #include<string.h>

int main(int argc, char *argv[])

{

#include<unistd.h>
#include<sys/types.h>
#include<sys/stat.h>

int symlink(const char *org_link, const char *sym_link); int readlink(const char*
sym_link,char* buf,int size); int lstat(const char * sym_link, struct stat* statv);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 22

char *buf [256], tname [256]; if (argc ==4)

return symlink(argv[2], argv[3]); /* create a symbolic link

/ else return link(argv[1], argv[2]); / creates a hard link

*/

}

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 23

Chapter 2: The Environment of a UNIX Process

1. Introduction

2. main function,

3. Process Termination

4. Command-Line Arguments

5. Environment List

6. Memory Layout of a C Program

7. Shared Libraries

8. Memory Allocation

9. Environment Variables

10. setjmp and longjmp Functions

11. getrlimit, setrlimit Functions

12. UNIX Kernel Support for Processes.

1. INTRODUCTION

A Process is a program under execution in a UNIX or POSIX system.

2. main FUNCTION

 A C program starts execution with a function called main.

 The prototype for the main function is

int main(int argc, char *argv[]);

where argc is the number of command-line arguments,

and argv is an array of pointers to the arguments.

 When a C program is executed by the kernel by one of the exec functions, a special start-up routine

is called before the main function is called.

 The executable program file specifies this routine as the starting address for the program; this is set

up by the link editor when it is invoked by the C compiler. This start-up routine takes values from

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 24

the kernel, the command-line arguments and the environment and sets things up so that the main

function is called.

3. PROCESS TERMINATION

 There are eight ways for a process to terminate. Normal termination occurs in five ways:

1. Return from main

2. Calling exit

3. Calling _exit or _Exit

4. Return of the last thread from its start routine

5. Calling pthread_exit from the last thread Abnormal termination occurs in three ways:

a. Calling abort

b. Receipt of a signal

c. Response of the last thread to a cancellation request

Exit Functions

 Three functions terminate a program normally: _exit and _Exit, which return to the kernel immediately,

and exit, which performs certain cleanup processing and then returns to the kernel.

 All three exit functions expect a single integer argument, called the exit status. Returning an

integer value from the main function is equivalent to calling exit with the same value.

 Thus exit(0); is the same as return(0); from the main function.

 In the following situations the exit status of the process is undefined.

1. any of these functions is called without an exit status.

#include <stdlib.h>

void exit(int status);

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 25

2. main does a return without a return value

3. main “falls off the end”, i.e if the exit status of the process is

undefined. Example:

#include <stdio.h>

main()

{

printf(“hello, world\n”);

}

$ cc hello.c

$./a.out

hello, world

$ echo $? // print the exit status

13

atexit Function

 With ISO C, a process can register up to 32 functions that are automatically called by exit. These

are called exit handlers and are registered by calling the atexit function.

 This declaration says that we pass the address of a function as the argument to atexit. When this

function is called, it is not passed any arguments and is not expected to return a value.

 The exit function calls these functions in reverse order of their registration. Each function is

called as many times as it was registered.

#include <stdlib.h>

int atexit(void (*func)(void));

Returns: 0 if OK, nonzero on error

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 26

Example of exit handlers

#include "apue.h"

static void my_exit1(void);

static void my_exit2(void);

int main(void)

{

if (atexit(my_exit2) != 0)

err_sys("can't register my_exit2");

if (atexit(my_exit1) != 0)

err_sys("can't register my_exit1");

if (atexit(my_exit1) != 0)

err_sys("can't register my_exit1");

printf("main is done\n");

return(0);

}

static void

my_exit1(void)

{

printf("first exit handler\n");

}

static void

my_exit2(void)

{

printf("second exit handler\n");

}

Output:

$./a.out

main is done

first exit handler

first exit handler

second exit handler

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 27

The below figure summarizes how a C program is started and the various ways it can terminate.

4. COMMAND-LINE ARGUMENTS

 When a program is executed, the process that does the exec can pass command-line arguments

to the new program.

Example: Echo all command-line arguments to standard output

#include "apue.h"

int main(int argc, char *argv[])

{

int i;

for (i = 0; i < argc; i++) /* echo all command-line args */

printf("argv[%d]: %s\n", i, argv[i]);

exit(0);

}

Output:

$./echoarg arg1 TEST foo

argv[0]: ./echoarg

argv[1]: arg1

argv[2]: TEST

argv[3]: foo

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 28

5. ENVIRONMENT LIST

 Each program is also passed an environment list. Like the argument list, the environment list is an

array of character pointers, with each pointer containing the address of a null-terminated C string.

 The address of the array of pointers is contained in the global variable environ:

extern char **environ;

Figure : Environment consisting of five C character strings

Generally any environmental variable is of the form: name = value.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 29

6. MEMORY LAYOUT OF A C PROGRAM

Historically, a C program has been composed of the following pieces:

 Text segment, the machine instructions that the CPU executes. Usually, the text segment is sharable

so that only a single copy needs to be in memory for frequently executed programs, such as text

editors, the C compiler, the shells, and so on. Also, the text segment is often read-only, to prevent a

program from accidentally modifying its instructions.

 Initialized data segment, usually called simply the data segment, containing variables that are

specifically initialized in the program. For example, the C declaration

int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized data segment with

its initial value.

 Uninitialized data segment, often called the "bss" segment, named after an ancient assembler

operator that stood for "block started by symbol." Data in this segment is initialized by the kernel to

arithmetic 0 or null pointers before the program starts executing. The C declaration

long sum[1000];

appearing outside any function causes this variable to be stored in the uninitialized data segment.

 Stack, where automatic variables are stored, along with information that is saved each time a

function is called. Each time a function is called, the address of where to return to and certain

information about the caller's environment, such as some of the machine registers, are saved on the

stack. The newly called function then allocates room on the stack for its automatic and temporary

variables. This is how recursive functions in C can work. Each time a recursive function calls itself,

a new stack frame is used, so one set of variables doesn't interfere with the variables from another

instance of the function.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 30

 Heap, where dynamic memory allocation usually takes place. Historically, the heap has been

located between the uninitialized data and the stack.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 31

7. SHARED LIBRARIES

 Nowadays most UNIX systems support shared libraries. Shared libraries remove the common library

routines from the executable file, instead maintaining a single copy of the library routine somewhere

in memory that all processes reference.

 This reduces the size of each executable file but may add some runtime overhead, either when the

program is first executed or the first time each shared library function is called. Another advantage

of shared libraries is that, library functions can be replaced with new versions without having to re-

link, edit every program that uses the library. With cc compiler we can use the option –g to indicate

that we are using shared library.

8. MEMORY ALLOCATION

ISO C specifies three functions for memory allocation:

 malloc, which allocates a specified number of bytes of memory. The initial value of the memory is

indeterminate.

 calloc, which allocates space for a specified number of objects of a specified size. The space is

initialized to all 0 bits.

 r

ealloc, which increases or decreases the size of a previously allocated area. When the size

increases, it may involve moving the previously allocated area somewhere else, to provide the

additional room at the end. Also, when the size increases, the initial value of the space between the

old contents and the end of the new area is indeterminate.

 The pointer returned by the three allocation functions is guaranteed to be suitably aligned so that it

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nobj, size_t size);

void *realloc(void *ptr, size_t

newsize);

All three return: non-null pointer if OK, NULL on error
void free(void *ptr);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 32

can be used for any data object.

 Because the three alloc functions return a generic void * pointer, if we #include <stdlib.h> (to

obtain the function prototypes), we do not explicitly have to cast the pointer returned by these

functions when we assign it to a pointer of a different type.

 The function free causes the space pointed to by ptr to be deallocated. This freed space is usually put

into a pool of available memory and can be allocated in a later call to one of the three alloc

functions.

 The realloc function lets us increase or decrease the size of a previously allocated area. For example,

if we allocate room for 512 elements in an array that we fill in at runtime but find that we need room

for more than 512 elements, we can call realloc. If there is room beyond the end of the existing

region for the requested space, then realloc doesn't have to move anything; it simply allocates the

additional area at the end and returns the same pointer that we passed it. But if there isn't room at the

end of the existing region, realloc allocates another area that is large enough, copies the existing 512-

element array to the new area, frees the old area, and returns the pointer to the new area.

 The allocation routines are usually implemented with the sbrk(2) system call. Although sbrk can

expand or contract the memory of a process, most versions of malloc and free never decrease their

memory size.

 The space that we free is available for a later allocation, but the freed space is not usually returned to

the kernel; that space is kept in the malloc pool.

 It is important to realize that most implementations allocate a little more space than is requested and

use the additional space for record keeping the size of the allocated block, a pointer to the next

allocated block, and the like. This means that writing past the end of an allocated area could

overwrite this record-keeping information in a later block. These types of errors are often

catastrophic, but difficult to find, because the error may not show up until much later. Also, it is

possible to overwrite this record keeping by writing before the start of the allocated area.

 Because memory allocation errors are difficult to track down, some systems provide versions of

these functions that do additional error checking every time one of the three alloc functions or free is

called. These versions of the functions are often specified by including a special library for the link

editor. There are also publicly available sources that you can compile with special flags to enable

additional runtime checking.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 33

Alternate Memory Allocators

Many replacements for malloc and free are available.

 libmalloc

SVR4-based systems, such as Solaris, include the libmalloc library, which provides a set of

interfaces matching the ISO C memory allocation functions. The libmalloc library includes mallopt,

a function that allows a process to set certain variables that control the operation of the storage

allocator. A function called mallinfo is also available to provide statistics on the memory allocator.

 vmalloc

Vo describes a memory allocator that allows processes to allocate memory using different

techniques for different regions of memory. In addition to the functions specific to vmalloc, the

library also provides emulations of the ISO C memory allocation functions.

 quick-fit

Historically, the standard malloc algorithm used either a best-fit or a first-fit memory allocation

strategy. Quick-fit is faster than either, but tends to use more memory. Free implementations of

malloc and free based on quick-fit are readily available from several FTP sites.

 alloca Function

The function alloca has the same calling sequence as malloc; however, instead of allocating memory

from the heap, the memory is allocated from the stack frame of the current function. The advantage

is that we don't have to free the space; it goes away automatically when the function returns. The

alloca function increases the size of the stack frame. The disadvantage is that some systems can't

support alloca, if it's impossible to increase the size of the stack frame after the function has been

called.

9. ENVIRONMENT VARIABLES

 The environment strings are usually of the form: name=value.

 The UNIX kernel never looks at these strings; their interpretation is up to the various applications

 . The shells, for example, use numerous environment variables.

 Some, such as HOME and USER, are set automatically at login, and others are for us to set. We

normally set environment variables in a shell start-up file to control the shell’s actions.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 34

 The functions that we can use to set and fetch values from the variables are setenv, putenv,

and getenv functions.

 The prototype of these functions are

 Note that this function returns a pointer to the value of a name=value string. We should always use

getenv to

fetch a specific value from the environment, instead of accessing environ directly.

 In addition to fetching the value of an environment variable, sometimes we may want to set an

environment variable. We may want to change the value of an existing variable or add a new

variable to the environment. The prototypes of these functions are

 The putenv function takes a string of the form name=value and places it in the environment

list. If name already exists, its old definition is first removed.

 The setenv function sets name to value. If name already exists in the environment, then

(a) if rewrite is nonzero, the existing definition for name is first removed;

(b) if rewrite is 0, an existing definition for name is not removed, name is not set to the new

value, and no error occurs.

 The unsetenv function removes any definition of name. It is not an error if such a definition does not

exist.

 Note the difference between putenv and setenv. Whereas setenv must allocate memory to

create the name=value string from its arguments, putenv is free to place the string passed to

#include <stdlib.h>
char *getenv(const char *name);

Returns: pointer to value associated with name, NULL if not found.

#include <stdlib.h>

int putenv(char

*str);

int setenv(const char *name, const char *value, int

rewrite); int unsetenv(const char *name);

All return: 0 if OK, nonzero on error.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 35

it directly into the environment.

NOTE:

1. If we're modifying an existing name:

a) If the size of the new value is less than or equal to the size of the existing value, we can just

copy the new string over the old string.

b) If the size of the new value is larger than the old one, however, we must malloc to obtain

room for the new string, copy the new string to this area, and then replace the old pointer

in the environment list for name with the pointer to this allocated area.

2. If we're adding a new name, it's more complicated. First, we have to call malloc to allocate

room for the name=value string and copy the string to this area.

a) Then, if it's the first time we've added a new name, we have to call malloc to obtain room for a

new list of pointers. We copy the old environment list to this new area and store a pointer to the

name=value string at the end of this list of pointers. We also store a null pointer at the end of this

list, of course. Finally, we set environ to point to this new list of pointers.

b) If this isn't the first time we've added new strings to the environment list, then we know that

we've already allocated room for the list on the heap, so we just call realloc to allocate room for

one more pointer. The pointer to the new name=value string is stored at the end of the list (on

top of the previous null pointer), followed by a null pointer.

10. setjmp AND longjmp FUNCTIONS

 In C, we can't goto a label that's in another function. Instead, we must use the setjmp and longjmp

functions to perform this type of branching. As we'll see, these two functions are useful for handling

error conditions that occur in a deeply nested function call.

#include <setjmp.h>
int setjmp(jmp_buf env);
Returns: 0 if called directly, nonzero if returning from a call to longjmp

void longjmp(jmp_buf env, int val);

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 36

 The setjmp function records or marks a location in a program code so that later when the longjmp

function is called from some other function, the execution continues from the location onwards.

 The env variable (the first argument) records the necessary information needed to continue execution.

 The env is of the jmp_buf defined in <setjmp.h> file, it contains the task.

Example of setjmp and longjmp

#include "apue.h"

#include <setjmp.h>

#define TOK_ADD 5

jmp_buf jmpbuffer;

int main(void)

{

char line[MAXLINE];

if (setjmp(jmpbuffer) != 0)

printf("error");

while (fgets(line, MAXLINE, stdin) != NULL)

do_line(line);

exit(0);

}

...

void cmd_add(void)

{

int token;

token = get_token();

if (token < 0) /* an error has occurred */

longjmp(jmpbuffer, 1);

/* rest of processing for this command */
}

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 37

 The setjmp function always returns ‘0’ on its success when it is called directly in a process (for the

first time).

 The longjmp function is called to transfer a program flow to a location that was stored in the env

argument.

 The program code marked by the env must be in a function that is among the callers of the current

function.

 When the process is jumping to the target function, all the stack space used in the current function

and it callers, upto the target function are discarded by the longjmp function.

 The process resumes execution by re-executing the setjmp statement in the target function that is

marked by env. The return value of setjmp function is the value(val), as specified in the longjmp

function call.

 The ‘val’ should be nonzero, so that it can be used to indicate where and why the longjmp function

was invoked and process can do error handling accordingly.

Note: The values of automatic and register variables are indeterminate when the longjmp is called but

static and global variable are unaltered. The variables that we don’t want to roll back after longjmp are

declared with keyword ‘volatile’.

Figure: Stack frames after cmd_add has been called

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 38

Figure: Stack frames after longjmp has been called

11. getrlimit AND setrlimit FUNCTIONS

 Every process has a set of resource limits, some of which can be queried and changed by the getrlimit

and setrlimit functions.

Each call to these two functions specifies a single resource and a pointer to the following structure:

Three rules govern the changing of the resource limits.

1. A process can change its soft limit to a value less than or equal to its hard limit.

2. A process can lower its hard limit to a value greater than or equal to its soft limit. This lowering

of the hard limit is irreversible for normal users.

3. Only a superuser process can raise a hard limit.

struct rlimit

{

rlim_t rlim_cur; /* soft limit: current limit */

rlim_t rlim_max; /* hard limit: maximum value for rlim_cur */

};

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlptr);

int setrlimit(int resource, const struct rlimit *rlptr);

Both return: 0 if OK, nonzero on error

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 39

An infinite limit is specified by the constant RLIM_INFINITY. The resource argument takes on one

of the following values:

RLIMIT_AS The maximum size in bytes of a process's total available memory.

RLIMIT_CORE The maximum size in bytes of a core file. A limit of 0 prevents the creation of a core

file.

RLIMIT_CPU The maximum amount of CPU time in seconds. When the soft limit is exceeded, the

SIGXCPU signal is sent to the process.

RLIMIT_DATA The maximum size in bytes of the data segment: the sum of the initialized data,

uninitialized data, and heap.

RLIMIT_FSIZE The maximum size in bytes of a file that may be created. When the soft limit is

exceeded, the process is sent the SIGXFSZ signal.

RLIMIT_LOCKS The maximum number of file locks a process can hold.

RLIMIT_MEMLOCK The maximum amount of memory in bytes that a process can lock into memory

using mlock(2).

RLIMIT_NOFILE The maximum number of open files per process. Changing this limit affects the value

returned by the sysconf function for its _SC_OPEN_MAX argument

RLIMIT_NPROC The maximum number of child processes per real user ID. Changing this limit affects

the value returned for _SC_CHILD_MAX by the sysconf function

RLIMIT_RSS Maximum resident set size (RSS) in bytes. If available physical memory is low, the

kernel takes memory from processes that exceed their RSS.

RLIMIT_SBSIZE The maximum size in bytes of socket buffers that a user can consume at any given

time.

RLIMIT_STACK The maximum size in bytes of the stack.

RLIMIT_VMEM This is a synonym for RLIMIT_AS. The resource limits affect the calling process and

are inherited by any of its children. This means that the setting of resource limits

needs to be built into the shells to affect all our future processes.

Example: Print the current resource limits

#include "apue.h"

#if defined(BSD) || defined(MACOS)

#include <sys/time.h>

#define FMT "%10lld "

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 40

#else

#define FMT "%10ld "

#endif

#include <sys/resource.h>

#define doit(name) pr_limits(#name, name)

static void pr_limits(char *, int);

int main(void)

{

#ifdef RLIMIT_AS

doit(RLIMIT_AS);

#endif

doit(RLIMIT_CORE);

doit(RLIMIT_CPU);

doit(RLIMIT_DATA);

doit(RLIMIT_FSIZE);

#ifdef RLIMIT_LOCKS

doit(RLIMIT_LOCKS);

#endif

#ifdef RLIMIT_MEMLOCK

doit(RLIMIT_MEMLOCK);

#endif

doit(RLIMIT_NOFILE);

#ifdef RLIMIT_NPROC

doit(RLIMIT_NPROC);

#endif

#ifdef RLIMIT_RSS

doit(RLIMIT_RSS);

#endif

#ifdef RLIMIT_SBSIZE

doit(RLIMIT_SBSIZE);

#endif

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 41

doit(RLIMIT_STACK);

#ifdef RLIMIT_VMEM

doit(RLIMIT_VMEM);

#endif

exit(0);

}

static void pr_limits(char *name, int resource)

12. UNIX KERNEL SUPPORT FOR PROCESS

 The data structure and execution of processes are dependent on operating system implementation.

 A UNIX process consists minimally of a text segment, a data segment and a stack segment. A

segment is an area of memory that is managed by the system as a unit.

 A text segment consists of the program text in machine executable instruction code format.

 The data segment contains static and global variables and their corresponding data.

 A stack segment contains runtime variables and the return addresses of all active functions for a

process.

 UNIX kernel has a process table that keeps track of all active process present in the system. Some of

these processes belongs to the kernel and are called as “system process”.

{

struct rlimit limit;

if (getrlimit(resource, &limit) < 0)

err_sys("getrlimit error for %s", name);

printf("%-14s ", name);

if (limit.rlim_cur == RLIM_INFINITY)

printf("(infinite) ");

else

printf(FMT, limit.rlim_cur);

if (limit.rlim_max == RLIM_INFINITY)

printf("(infinite)");

else

printf(FMT, limit.rlim_max);

putchar((int)'\n');

}

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 42

 Every entry in the process table contains pointers to the text, data and the stack segments and also to

U-area of a process.

 U-area of a process is an extension of the process table entry and contains other process specific data

such as the file descriptor table, current root and working directory inode numbers and set of system

imposed process limits.

 All processes in UNIX system expect the process that is created by the system boot code, are created

by the fork system call. After the fork system call, once the child process is created, both the parent

and child processes resumes execution. When a process is created by fork, it contains duplicated

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 43

copies of the text, data and stack segments of its parent as shown in the Figure below. Also it has a

file descriptor table, which contains reference to the same opened files as the parent, such that they

both share the same file pointer to each opened files.

Figure: Parent & child relationship after fork

The process will be assigned with attributes, which are either inherited from its parent or will be set by the

kernel.

 A real user identification number (rUID): the user ID of a user who created the parent process.

 A real group identification number (rGID): the group ID of a user who created that parent process.

 An effective user identification number (eUID): this allows the process to access and create files with

the same privileges as the program file owner.

 An effective group identification number (eGID): this allows the process to access and create

files with the same privileges as the group to which the program file belongs.

 Saved set-UID and saved set-GID: these are the assigned eUID and eGID of the process respectively.

 Process group identification number (PGID) and session identification number (SID): these

identify the

process group and session of which the process is

member.

 Supplementary group identification numbers: this is a set of additional group IDs for a user who

created

the process.

 Current directory: this is the reference (inode number) to a working directory file.

 Root directory: this is the reference to a root directory.

 Signal handling: the signal handling settings.

 Signal mask: a signal mask that specifies which signals are to be blocked.

 Unmask: a file mode mask that is used in creation of files to specify which accession rights should

be taken out.

 Nice value: the process scheduling priority value.

 Controlling terminal: the controlling terminal of the process.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 44

 In addition to the above attributes, the following attributes are different between the parent and child

processes:

Process identification number (PID): an integer identification number that is unique per process in

an entire operating system.

Parent process identification number (PPID): the parent process PID.

Pending signals: he set of signals that are pending delivery to the parent process.

Alarm clock time: the process alarm clock time is reset to zero in the child process.

File locks: the set of file locks owned by the parent process is not inherited by the chid process.

fork and exec are commonly used together to spawn a sub-process to execute a different program. The

advantages of this method are:

 A process can create multiple processes to execute multiple programs concurrently.

 Because each child process executes in its own virtual address space, the parent process is not

affected by the execution status of its child process.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 1

Chapter 3: Process Control

1. Introduction

2. Process Identifiers

3. fork

4. vfork

5. exit

6. wait

7. waitpid

8. wait3

9. wait4 Functions

10. Race Conditions

11. exec

1. INTRODUCTION

Process control is concerned about creation of new processes, program execution, and process

termination.

2. PROCESS IDENTIFIERS

 Every process has a unique process ID, anon negative integer.

 There are some processes:

Process ID 0 is usually the scheduler process known as swapper

Process ID 1 is usually the init process and is invoked by the kernel at the end of the bootstrap procedure

Process ID 2 is the page deamon responsible for supporting the paging of the virtual memory system.

 In addition to the process ID, there are other identifier’s for every process. The following function retien

these identifiers.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 2

#include <unistd.h>

pid_t getpid(void);

Returns: process ID of calling process

pid_t getppid(void);

Returns: parent process ID of calling process

uid_t getuid(void);

Returns: real user ID of calling process

uid_t geteuid(void);

Returns: effective user ID of calling process

gid_t getgid(void);

Returns: real group ID of calling process

gid_t getegid(void);

Returns: effective group ID of calling process

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 3

3. fork FUNCTION

 An existing process can create a new one by calling the fork function.

 The new process created by fork is called the child process.

 This function is called once but returns twice.

 The only difference in the returns is that the return value in the child is 0, whereas the return value in the

parent is the process ID of the new child.

 The reason the child's process ID is returned to the parent is that a process can have more than one child,

and there is no function that allows a process to obtain the process IDs of its children.

 The reason fork returns 0 to the child is that a process can have only a single parent, and the child can

always call getppid to obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel,

so it's not possible for 0 to be the process ID of a child.)

 Both the child and the parent continue executing with the instruction that follows the call to fork.

 The child is a copy of the parent.

 For example, the child gets a copy of the parent's data space, heap, and stack.

 Note that this is a copy for the child; the parent and the child do not share these portions of memory.

 The parent and the child share the text segment.

Example programs:

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parent, 1 on error.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 4

Program 1

/* Program to demonstrate fork function

Program name – fork1.c */

#include<sys/types.h>

#include<unistd.h>

int main()

{

fork();

printf(“\n hello USP”);

}

Output :

$ cc fork1.c

$./a.out

hello USP

hello USP

Program 2

/* Program name – fork2.c */

#include<sys/types.h>

#include<unistd.h>

int main()

{

printf(“\n 6 sem “);

fork();

printf(“\n hello USP”);

}

Output :

$ cc fork1.c

$./a.out

6 sem

hello USP

hello USP

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 5

File Sharing

Consider a process that has three different files opened for standard input, standard output, and standard error. On

return from fork, we have the arrangement shown in Figure :

Figure:Sharing of open files between parent and child after fork

 It is important that the parent and the child share the same file offset.

 Consider a process that forks a child, then waits for the child to complete.

 Assume that both processes write to standard output as part of their normal processing.

 If the parent has its standard output redirected (by a shell, perhaps) it is essential that the parent's file

offset be updated by the child when the child writes to standard output.

 In this case, the child can write to standard output while the parent is waiting for it; on completion of the

child, the parent can continue writing to standard output, knowing that its output will be appended to

whatever the child wrote.

 If the parent and the child did not share the same file offset, this type of interaction would be more

difficult to accomplish and would require explicit actions by the parent.

There are two normal cases for handling the descriptors after a fork.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 6

1. The parent waits for the child to complete. In this case, the parent does not need to do anything with its

descriptors. When the child terminates, any of the shared descriptors that the child read from or wrote to

will have their file offsets updated accordingly.

2. Both the parent and the child go their own ways. Here, after the fork, the parent closes the descriptors that

it doesn't need, and the child does the same thing. This way, neither interferes with the other's open

descriptors. This scenario is often the case with network servers.

There are numerous other properties of the parent that are inherited by the child:

 Real user ID, real group ID, effective user ID, effective group ID

 Supplementary group IDs

 Process group ID

 Session ID

 Controlling terminal

 The set-user-ID and set-group-ID flags

 Current working directory

 Root directory

 File mode creation mask

 Signal mask and dispositions

 The close-on-exec flag for any open file descriptors

 Environment

 Attached shared memory segments

 Memory mappings

 Resource limits

The differences between the parent and child are

 The return value from fork

 The process IDs are different

 The two processes have different parent process IDs: the parent process ID of the child is the parent; the

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 7

parent process ID of the parent doesn't change.

 The child's tms_utime, tms_stime, tms_cutime, and tms_cstime values are set to 0

 File locks set by the parent are not inherited by the child

 Pending alarms are cleared for the child

 The set of pending signals for the child is set to the empty set

The two main reasons for fork to fail are

(a) if too many processes are already in the system, which usually means that something else is wrong, or

(b) if the total number of processes for this real user ID exceeds the system's limit.

There are two uses for fork:

 When a process wants to duplicate itself so that the parent and child can each execute different sections of

code at the same time. This is common for network servers, the parent waits for a service request from a

client. When the request arrives, the parent calls fork and lets the child handle the request. The parent

goes back to waiting for the next service request to arrive.

 When a process wants to execute a different program. This is common for shells. In this case, the child

does an exec right after it returns from the fork.

4. vfork FUNCTION

 The function vfork has the same calling sequence and same return values as fork.

 The vfork function is intended to create a new process when the purpose of the new process is to exec a

new program.

 The vfork function creates the new process, just like fork, without copying the address space of the

parent into the child, as the child won't reference that address space; the child simply calls exec (or exit)

right after the vfork.

 Instead, while the child is running and until it calls either exec or exit, the child runs in the address space

of the parent. This optimization provides an efficiency gain on some paged virtual-memor

implementations of the UNIX System.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 8

 Another difference between the two functions is that vfork guarantees that the child runs first, until the

child calls exec or exit. When the child calls either of these functions, the parent resumes.

Example of vfork function

#include "apue.h"

int glob = 6; /* external variable in initialized data */

int main(void)

{

int var; /* automatic variable on the stack */

pid_t pid;

var = 88;

printf("before vfork\n"); /* we don't flush stdio */

if ((pid = vfork()) < 0) {

err_sys("vfork error");

} else if (pid == 0) { /* child */

glob++; /* modify parent's variables */

var++;

_exit(0); /* child terminates */

}

/*

* Parent continues here.

*/

printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);

exit(0);

}

Output:

$./a.out

before vfork

pid = 29039, glob = 7, var = 89

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 9

5. exit FUNCTIONS

 A process can terminate normally in five ways:

1. Executing a return from the main function.

2. Calling the exit function.

3. Calling the _exit or _Exit function.

In most UNIX system implementations, exit(3) is a function in the standard C library, whereas _exit(2) is

a system call.

4. Executing a return from the start routine of the last thread in the process. When the last thread returns

from its start routine, the process exits with a termination status of 0.

5. Calling the pthread_exit function from the last thread in the process.

The three forms of abnormal termination are as follows:

1. Calling abort. This is a special case of the next item, as it generates the SIGABRT signal.

2. When the process receives certain signals. Examples of signals generated by the kernel include the process

referencing a memory location not within its address space or trying to divide by 0.

3. The last thread responds to a cancellation request. By default, cancellation occurs in a deferred manner:

one thread requests that another be canceled, and sometime later, the target thread terminates.

6. wait AND waitpid FUNCTIONS

 When a process terminates, either normally or abnormally, the kernel notifies the parent by sending the

SIGCHLD signal to the parent. Because the termination of a child is an asynchronous event - it can

happen at any time while the parent is running - this signal is the asynchronous notification from the

kernel to the parent.

 The parent can choose to ignore this signal, or it can provide a function that is called when the signal

occurs: a signal handler.

 A process that calls wait or waitpid can:

 Block, if all of its children are still running

 Return immediately with the termination status of a child, if a child has terminated and is

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 10

waiting for its termination status to be fetched

 Return immediately with an error, if it doesn't have any child processes.

The differences between these two functions are as follows.

 The wait function can block the caller until a child process terminates, whereas waitpid has an

option that prevents it from blocking.

 The waitpid function doesn't wait for the child that terminates first; it has a number of options that

control which process it waits for.

 If a child has already terminated and is a zombie, wait returns immediately with that child's status.

Otherwise, it blocks the caller until a child terminates. If the caller blocks and has multiple children, wait

returns when one terminates.

 For both functions, the argument statloc is a pointer to an integer. If this argument is not a null pointer, the

termination status of the terminated process is stored in the location pointed to by the argument.

#include <sys/wait.h>

pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, 0 (see later), or 1 on error.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 11

Print a description of the exit status

#include "apue.h"

#include <sys/wait.h>

Void pr_exit(int status)

{

if (WIFEXITED(status))

printf("normal termination, exit status = %d\n", WEXITSTATUS(status));

else if (WIFSIGNALED(status))

printf("abnormal termination, signal number = %d%s\n",WTERMSIG(status),

#ifdef WCOREDUMP

WCOREDUMP(status) ? " (core file generated)" : "");

#else

"");

#endif

else if (WIFSTOPPED(status))

printf("child stopped, signal number = %d\n", WSTOPSIG(status));

}

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 12

Program to Demonstrate various exit statuses

#include "apue.h"

#include <sys/wait.h>

Int main(void)

{

pid_t pid;

int status;

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid == 0) /* child */

exit(7);

if (wait(&status) != pid) /* wait for child */

err_sys("wait error");

pr_exit(status); /* and print its status */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid == 0) /* child */

abort(); /* generates SIGABRT */

if (wait(&status) != pid) /* wait for child */

err_sys("wait error");

pr_exit(status); /* and print its status */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid == 0) /* child */

status /= 0; /* divide by 0 generates SIGFPE */

if (wait(&status) != pid) /* wait for child */

err_sys("wait error");

pr_exit(status); /* and print its status */

exit(0);

}

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 13

The interpretation of the pid argument for waitpid depends on its value:

pid == 1 Waits for any child process. In this respect, waitpid is equivalent to wait.

pid > 0 Waits for the child whose process ID equals pid.

pid == 0 Waits for any child whose process group ID equals that of the calling process.

pid < 1 Waits for any child whose process group ID equals the absolute value of pid.

Macros to examine the termination status returned by wait and waitpid

Macro Description

WIFEXITED(status) True if status was returned for a child that terminated normally. In

this case, we can execute WEXITSTATUS (status) to fetch the

low-order 8 bits of the argument that the child passed to exit,

_exit,or _Exit.

WIFSIGNALED (status) True if status was returned for a child that terminated abnormally,

by receipt of a signal that it didn't catch. In this case, we can

execute WTERMSIG (status) to fetch the signal number that

caused the termination. Additionally, some implementations (but

not the Single UNIX Specification) define the macro

WCOREDUMP (status) that returns true if a core file of the

terminated process was generated.

WIFSTOPPED (status) True if status was returned for a child that is currently stopped. In

this case, we can execute WSTOPSIG (status) to fetch the signal

number that caused the child to stop.

WIFCONTINUED (status) True if status was returned for a child that has been continued after

a job control stop

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 14

The options constants for waitpid

Constant Description

WCONTINUED If the implementation supports job control, the status of any child

specified by pid that has been continued after being stopped, but

whose status has not yet been reported, is returned.

WNOHANG The waitpid function will not block if a child specified by pid is

not immediately available. In this case, the return value is 0.

WUNTRACED If the implementation supports job control, the status of any child

specified by pid that has stopped, and whose status has not been

reported since it has stopped, is returned. The WIFSTOPPED

macro determines whether the return value corresponds to a

stopped child process.

 The waitpid function provides three features that aren't provided by the wait function.

 The waitpid function lets us wait for one particular process, whereas the wait function returns the status

of any terminated child. We'll return to this feature when we discuss the popen function.

 The waitpid function provides a nonblocking version of wait. There are times when we want to fetch a

child's status, but we don't want to block.

 The waitpid function provides support for job control with the WUNTRACED and WCONTINUED

options.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 15

Program to Avoid zombie processes by calling fork twice

#include "apue.h"

#include <sys/wait.h>

Int main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* first child */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid > 0)

exit(0); /* parent from second fork == first child */

/*

* We're the second child; our parent becomes init as soon

* as our real parent calls exit() in the statement above.

* Here's where we'd continue executing, knowing that when

* we're done, init will reap our status.

*/

sleep(2);

printf("second child, parent pid = %d\n", getppid());

exit(0);

}

if (waitpid(pid, NULL, 0) != pid) /* wait for first child */

err_sys("waitpid error");

/*

* We're the parent (the original process); we continue executing,

* knowing that we're not the parent of the second child.

*/

exit(0);

}

Output:

$./a.out

$ second child, parent pid = 1

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 16

7. waitid FUNCTION

The waitid function is similar to waitpid, but provides extra flexibility.

The idtype constants for waited are as follows:

Constant Description

P_PID Wait for a particular process: id contains the

process ID of the child to wait for.

P_PGID Wait for any child process in a particular

process group: id contains the process group ID

of the children

to wait for.

P_ALL Wait for any child process: id is ignored.

The options argument is a bitwise OR of the flags as shown below: these flags indicate which state changes

the caller is interested in.

#include <sys/wait.h>

int waitid (idtype_t idtype, id_t id, siginfo_t *infop, int options);

Returns: 0 if OK, -1 on error

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 17

Constant Description

WCONTINUED Wait for a process that has previously stopped

and has been continued, and whose status has

not yet been reported.

WEXITED Wait for processes that have exited.

WNOHANG Return immediately instead of blocking if there

is no child exit status available.

WNOWAIT Don't destroy the child exit status. The child's

exit status can be retrieved by a subsequent call

to wait, waitid,or waitpid.

WSTOPPED Wait for a process that has stopped and whose

status has not yet been reported.

8. wait3 AND wait4 FUNCTIONS

 The only feature provided by these two functions that isn't provided by the wait, waitid, and waitpid

functions is an additional argument that allows the kernel to return a summary of the resources used by the

terminated process and all its child processes.

 The prototypes of these functions are:

 The resource information includes such statistics as the amount of user CPU time, the amount of system

#include <sys/types.h>

#include <sys/wait.h>

#include <sys/time.h>

#include <sys/resource.h>

pid_t wait3(int *statloc, int options, struct rusage *rusage);

pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage);

Both return: process ID if OK,-1 on error

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 18

CPU time, number of page faults, number of signals received etc. the resource information is available

only for terminated child process not for the process that were stopped due to job control.

9. RACE CONDITIONS

 A race condition occurs when multiple processes are trying to do something with shared data and the final

outcome depends on the order in which the processes run.

 Example: The program below outputs two strings: one from the child and one from the parent.

 The program contains a race condition because the output depends on the order in which the processes are

run by the kernel and for how long each process runs.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 19

#include "apue.h"

static void charatatime(char *);

int main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) {

charatatime("output from child\n");

} else {

charatatime("output from parent\n");

}

exit(0);

}

static void

charatatime(char *str)

{

char *ptr;

int c;

setbuf(stdout, NULL); /* set unbuffered */

for (ptr = str; (c = *ptr++) != 0;)

putc(c, stdout);

}

Output:

$./a.out

ooutput from child

utput from parent

$./a.out

ooutput from child

utput from parent

$./a.out

output from child

output from parent

program modification to avoid race condition

Program to use TELL and WAIT functions

#include "apue.h"

static void charatatime(char *);

int main(void)

{

pid_t pid;

+ TELL_WAIT();

+

if ((pid = fork()) < 0) {

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 20

 When we run this program, the output is as we expect; there is no intermixing of output from the two

processes.

10. exec FUNCTIONS

 When a process calls one of the exec functions, that process is completely replaced by the new program,

and the new program starts executing at its main function.

 The process ID does not change across an exec, because a new process is not created; exec merely

replaces the current process - its text, data, heap, and stack segments - with a brand new program from

disk.

 There are 6 exec functions:

err_sys("fork error");

} else if (pid == 0) {

+ WAIT_PARENT(); /* parent goes first */

charatatime("output from child\n");

} else {

charatatime("output from parent\n");

+ TELL_CHILD(pid);

}

exit(0);

}

static void

charatatime(char *str)

{

char *ptr;

int c;

setbuf(stdout, NULL); /* set unbuffered */

for (ptr = str; (c = *ptr++) != 0;)

putc(c, stdout);

}

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 21

 The first difference in these functions is that the first four take a pathname argument, whereas the last two

take a filename argument. When a filename argument is specified

 If filename contains a slash, it is taken as a pathname.

 Otherwise, the executable file is searched for in the directories specified by the PATH

environment variable.

 The next difference concerns the passing of the argument list (l stands for list and v stands for vector).

 The functions execl, execlp, and execle require each of the command-line arguments to the new program

to be specified as separate arguments. For the other three functions (execv, execvp, and execve), we have

to build an array of pointers to the arguments, and the address of this array is the argument to these three

functions.

 The final difference is the passing of the environment list to the new program. The two functions whose

names end in an e (execle and execve) allow us to pass a pointer to an array of pointers to the environment

strings. The other four functions, however, use the environ variable in the calling process to copy the

existing environment for the new program.

#include <unistd.h>

int execl(const char *pathname, const char *arg0,... /* (char *)0 */);

int execv(const char *pathname, char *const argv []);

int execle(const char *pathname, const char *arg0,... /*(char *)0, char *const envp */);

int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *filename, const char *arg0, ... /* (char *)0 */);

int execvp(const char *filename, char *const argv []);

All six return: -1 on error, no return on

success.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 22

The above table shows the differences among the 6 exec functions.

 We've mentioned that the process ID does not change after an exec, but the new program inherits

additional properties from the calling process:

Process ID and parent process ID

Real user ID and real group ID

Supplementary group IDs

Process group ID

Session ID

Controlling terminal

Time left until alarm clock

Current working directory

Root directory

File mode creation mask

File locks

Process signal mask

Pending signals

Resource limits

Values for tms_utime, tms_stime, tms_cutime, and tms_cstime.

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 23

 Note that the shell prompt appeared before the printing of argv[0] from the second exec. This is because

the parent did not wait for this child process to finish.

Example of exec functions

#include "apue.h"

#include <sys/wait.h>

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };

int main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* specify pathname, specify environment */

if (execle("/home/sar/bin/echoall", "echoall", "myarg1",

"MY ARG2", (char *)0, env_init) < 0)

err_sys("execle error");

}

if (waitpid(pid, NULL, 0) < 0)

err_sys("wait error");

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* specify filename, inherit environment */

if (execlp("echoall", "echoall", "only 1 arg", (char *)0) < 0)

err_sys("execlp error");

}

exit(0);

}

Output:

$./a.out

argv[0]: echoall

argv[1]: myarg1

argv[2]: MY ARG2

USER=unknown

PATH=/tmp

$ argv[0]: echoall

argv[1]: only 1 arg

USER=sar

LOGNAME=sar

SHELL=/bin/bash

47 more lines that aren't shown

HOME=/home/sar

Module 3_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 24

Echo all command-line arguments and all environment strings

#include "apue.h"

int main(int argc, char *argv[])

{

int i;

char **ptr;

extern char **environ;

for (i = 0; i < argc; i++) /* echo all command-line args */

printf("argv[%d]: %s\n", i, argv[i]);

for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */

printf("%s\n", *ptr);

exit(0);

}

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 1

Chapter 1: Process Control

1. Changing User IDs and Group IDs
2. Interpreter Files
3. System Function
4. Process Accounting
5. User Identification
6. Process Times
7. I/O Redirection

1. CHANGING USER IDs AND GROUP IDs
 When our programs need additional privileges or need to gain access to resources that they currently

aren't allowed to access, they need to change their user or group ID to an ID that has the appropriate
privilege or access.

 Similarly, when our programs need to lower their privileges or prevent access to certain resources, they
do so by changing either their user ID or group ID to an ID without the privilege or ability access to the
resource.

Both return: 0 if OK, 1 on error

There are rules for who can change the IDs. Let's consider only the user ID for now. (Everything we
describe for the user ID also applies to the group ID.)
 If the process has superuser privileges, the setuid function sets the real user ID, effective user ID, and

saved set-user-ID to uid.
 If the process does not have superuser privileges, but uid equals either the real user ID or the saved set-

user- ID, setuid sets only the effective user ID to uid. The real user ID and the saved set-user-ID are not
changed.

 If neither of these two conditions is true, errnois set to EPERM, and 1 is returned.

We can make a few statements about the three user IDs that the kernel maintains.
 Only a superuser process can change the real user ID. Normally, the real user ID is set by the

login(1) program when we log in and never changes. Because login is a superuser process, it sets
all three user IDs when it calls setuid.

 The effective user ID is set by the exec functions only if the set-user-ID bit is set for the program
file. If the set-user-ID bit is not set, the exec functions leave the effective user ID as its current

#include <unistd.h>

int setuid(uid_t uid);
int setgid(gid_t gid);

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 2

#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

int setregid(gid t rgid, gid t egid);

value. We can call setuid at any time to set the effective user ID to either the real user ID or the
saved set-user-ID. Naturally, we can't set the effective user ID to any random value.

 The saved set-user-ID is copied from the effective user ID by exec. If the file's set-user-ID bit is
set, this copy is saved after execstores the effective user ID from the file's user ID.

setreuidand setregidFunctions

 Swapping of the real user ID and the effective user ID with the setreuid function.

 Both return : 0 if OK, -1 on error

 We can supply a value of 1 for any of the arguments to indicate that the corresponding ID should remain
unchanged.

 The rule is simple: an unprivileged user can always swap between the real user ID and the effective user
ID.

 This allows a set-user-ID program to swap to the user’s normal permissions and swap back again later
for set-user- ID operations.

seteuid and setegid functions :

 POSIX.1 includes the two functions seteuid and setegid. These functions are similar to setuid and
setgid, but only the effective user ID or effective group ID is changed.

#include <unistd.h>

int seteuid(uid_t uid);

int setegid(gid_t gid);

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 3

Both return : 0 if OK, 1 on error
 An unprivileged user can set its effective user ID to either its real user ID or its saved set-user-ID.
 For a privileged user, only the effective user ID is set to uid. (This differs from the setuid

function, which changes all three userIDs)

Figure: Summary of all the functions that set the various user Ids

2. INTERPRETER FILES
 These files are text files that begin with a line of the form
 #! pathname [optional-argument]
 The space between the exclamation point and the pathname is optional. The most common of these

interpreter files begin with the line
 #!/bin/sh
 The pathname is normally an absolute pathname, since no special operations are performed on it

(i.e., PATH is not used).
 The recognition of these files is done within the kernel as part of processing the exec system call.
 The actual file that gets executed by the kernel is not the interpreter file, but the file specified by the

pathname on the first line of the interpreter file.
 Be sure to differentiate between the interpreter filea text file that begins with #!and the interpreter,

which is specified by the pathname on the first line of the interpreter file.
 Be aware that systems place a size limit on the first line of an interpreter file. This limit includes the

#!, the pathname, the optional argument, the terminating newline, and any spaces.

A program that execs an interpreter file
#include "apue.h" #include<sys/wait.h>
int main(void)
{

pid_t pid;
if ((pid = fork()) < 0) {

err_sys("fork error");
} else if (pid == 0) { /* child */

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 4

#include <stdlib.h>
int system(const char *cmdstring);

if (execl("/home/sar/bin/testinterp","testinterp", "myarg1", "MY ARG2", (char *)0)< 0)
err_sys("execl error");

}
if (waitpid(pid, NULL, 0) < 0) /* parent

*/ err_sys("waitpid error");
exit(0);

}

Output:

$ cat

/home/sar/bin/testinterp
#!/home/sar/bin/echoarg foo
$./a.out
argv[0]:
/home/sar/bin/echoarg
argv[1]: foo
argv[2]:
/home/sar/bin/testinterp
argv[3]: myarg1
argv[4]: MY ARG2

system FUNCTION

 If cmdstring is a null pointer, system returns nonzero only if a command processor is
available. This feature determines whether the system function is supported on a given
operating system.

 Under the UNIX System, system is always available.
Because system is implemented by calling fork, exec, and waitpid, there are three types of return values.

1. If either the forkfails or waitpid returns an error other than EINTR, systemreturns 1 with
errnoset to indicate the error.

2. If the execfails, implying that the shell can't be executed, the return value is as if the shell had
executed exit(127).

3. Otherwise, all three functions fork, exec, and waitpid succeed, and the return value from
system is the termination status of the shell, in the format specified for waitpid.

Program: The systemfunction, without signal handling
#include<sys/wait.h>
#include<errno.h>
#include<unistd.h>
int system(const char *cmdstring) /* version without signal handling */

{

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 5

if (cmdstring == NULL)
return(1); /* always a command processor with UNIX */

if ((pid = fork()) < 0)

{
status = -1; /* probably out of processes */

}

else if (pid == 0)
{ execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);

_exit(127); /* execl error */
}

else { /* parent */

while (waitpid(pid, &status, 0) < 0)
{ if (errno != EINTR) {

status = -1;

}

}
}

return(status);
}

Program: Calling the system function

#include "apue.h"
#include <sys/wait.h>
int main(void)
{

int status;
if ((status = system("date")) < 0)

err_sys("system() error");
pr_exit(status);

if ((status = system("nosuchcommand")) < 0)

err_sys("system() error");

pr_exit(status);

if ((status = system("who; exit 44")) < 0)
err_sys("system() error");

pr_exit(status);

exit(0);
}

Program: Execute the command-line argument using system

#include "apue.h"

int main(int argc, char *argv[])
{

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 6

int status;

if (argc < 2)

err_quit("command-line argument required");

if ((status = system(argv[1])) < 0)
err_sys("system() error");

pr_exit(status);

exit(0);

}

Program: Print real and effective user IDs

#include "apue.h"

int main(void)
{

printf("real uid = %d, effective uid = %d\n", getuid(), geteuid());
exit(0);
}

3. PROCESS ACCOUNTING
 Most UNIX systems provide an option to do process accounting. When enabled, the kernel

writes an accounting record each time a process terminates.
 These accounting records are typically a small amount of binary data with the name of the

command, the amount of CPU time used, the user ID and group ID, the starting time, and so on.
 A super user executes accton with a pathname argument to enable accounting.
 The accounting records are written to the specified file, which is usually /var/account/acct.

Accounting is turned off by executing accton without any arguments.
 The data required for the accounting record, such as CPU times and number of characters

transferred, is kept by the kernel in the process table and initialized whenever a new process is
created, as in the child after a fork.

 Each accounting record is written when the process terminates.
 This means that the order of the records in the accounting file corresponds to the termination order

of the processes, not the order in which they were started.
 The accounting records correspond to processes, not programs.

 A new record is initialized by the kernel for the child after a fork, not when a new program is
executed. The structure of the accounting records is defined in the header <sys/acct.h> and
looks something like

typedef u_short comp_t; /* 3-bit base 8 exponent; 13-bit fraction */

struct
{

acct

char ac_flag; /* flag */
char ac_stat; /* termination status (signal & core flag only) */

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 7

 /* (Solaris only) */
uid_t ac_uid; /* real user ID */
gid_t ac_gid; /* real group ID */
dev_t ac_tty; /* controlling terminal */
time_t ac_btime; /* starting calendar time */
comp_t ac_utime; /* user CPU time (clock ticks) */
comp_t ac_stime; /* system CPU time (clock ticks) */
comp_t ac_etime; /* elapsed time (clock ticks) */
comp_t ac_mem; /* average memory usage */
comp_t ac_io; /* bytes transferred (by read and write) */

 /* "blocks" on BSD systems */
comp_t ac_rw; /* blocks read or written */

 /* (not present on BSD systems) */
char ac_comm[8]; /* command name: [8] for Solaris, */

 /* [10] for Mac OS X, [16] for FreeBSD, and */
 /* [17] for Linux */
};

The ac_flag member records certain events during the execution of the process.

ac_flag Description

AFORK process is the result of fork, but never called exec

ASU process used superuser privileges

ACOMPAT process used compatibility mode

ACORE process dumped core

AXSIG process was killed by a signal

AEXPND expanded accounting entry

Process structure for accounting example

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 8

4. USER IDENTIFICATION

 Any process can find out its real and effective user ID and group ID.
 Sometimes, however, we want to find out the login name of the user who's running the program.
 We could call getpwuid(getuid()), but what if a single user has multiple login names, each with the

same user ID? (A person might have multiple entries in the password file with the same user ID to
have a different login shell for each entry).

 The system normally keeps track of the name we log in and the getlogin function provides a way to
fetch that login name.

Returns : pointer to string giving login name if OK, NULL on error

 This function can fail if the process is not attached to a terminal that a user logged in to.

5. PROCESS TIMES

 We describe three times that we can measure: wall clock time, user CPU time, and system CPU
time. Any process can call the times function to obtain these values for itself and any terminated
children.

Returns: elapsed wall clock time in clock ticks if OK, 1 on error

 This function fills in the tms structure pointed to by buf:

struct tms
{
clock_t tms_utime; /* user CPU time */

clock_t tms_stime; /* system CPU time */

clock_t tms_cutime; /* user CPU time, terminated children */

clock_t tms_cstime; /* system CPU time, terminated children */

};

 Note that the structure does not contain any measurement for the wall clock time.
 Instead, the function returns the wall clock time as the value of the function, each time it's called.
 This value is measured from some arbitrary point in the past, so we can't use its absolute value; instead, we

use its relative value.

#include <unistd.h>
char *getlogin(void);

#include<sys/times.h>
Clock_t times(struct tms * buf)

Module 4_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 9

$ echo “Hello World!” > my_files [Enter]
$ cat my_files [Enter]
Hello World!

Eg: $ls > my_files [Enter]
$ cat my_files [Enter]

foo
bar
fred
dino

$

6. I/O Redirection

 It scans the command line for the occurrence of the special redirection characters <,>,or >>
 Unix provides the capability to change where standard input comes from or where ouput goes using a

concept called Input/Output(I/O) redirection.
 I/O redirection is accomplished using a redirection operator which allows the user to specify the input

or output data be directed to a file.
 The output redirection operator is the >(greater than) symbol and general syntax:

 command > output_file_spec

 Spaces around the redirection is not mandatory, but to add readability to the command.

 The append operator is the >>

 The first output redirection creates the file if it does not exist or overwrites its content if it does
and the second redirection appends the string “Hello World!” to the end of the file.

 When using the append redirection operator, if the file does not exist, >> will cause its
creation and append the output (to the empty file).

 The ability also exists to redirect the standard input using the input redirection operator, the < (less
than) symbol

 The general syntax of input redirection:
command < input_file_spec

$ ls > my_files [Enter]
$ echo “Hello World!” >> my_files [Enter]
$ cat my_files [Enter]

foo
bar
fred
dino
Hello World!

Chapter 2: INTERPROCESS
COMMUNICATION

Overview of IPC Methods
1. Pipes
2. Popen and pclose Functions
3. Coprocesses
4. FIFOs
5. System V IPC
6. Message Queues
7. Semaphores

INTRODUCTION

 IPC enables one application to control another application, and for
several applications to share the same data without interfering with one
another. IPC is required in all multiprocessing systems, but it is not
generally supported by single-process operating systems.

 The various forms of IPC that are supported on a UNIX system are as
follows :

1) Half duplex Pipes
2) FIFO’s
3) Full duplex Pipes
4) Named full duplex Pipes
5) Message queues
6) Shared memory
7) Semaphores
8) Sockets
9) STREAMS

 The first seven forms of IPC are usually restricted to IPC between processes

on the same host.
 The final two i.e. Sockets and STREAMS are the only two that are

generally supported for IPC between processes on different hosts.

1. PIPES

 Pipes are the oldest form of UNIX System IPC. Pipes have two
limitations.

 Historically, they have been half duplex (i.e., data flows in only one
direction).

 Pipes can be used only between processes that have a common ancestor.
 Normally, a pipe is created by a process, that process calls fork, and

the pipe is used between the parent and the child.

#include <unistd.h>
int pipe(int filedes[2]);

Returns: 0 if OK, 1 on error.

 A pipe is created by calling the pipe function.

 Two file descriptors are returned through the filedes argument:
filedes[0] is open for reading, and filedes[1] is open for writing.

 The output of filedes[1] is the input for filedes[0].

 Two ways to picture a half-duplex pipe are shown in Figure 1.
 The left half of the figure shows the two ends of the pipe connected

in a single process. The right half of the figure emphasizes that the
data in the pipe flows through the kernel.

Figure 1. Two ways to view a half-duplex

pipe
 A pipe in a single process is next to useless.
 Normally, the process that calls pipe then calls fork, creating an IPC

channel from the parent to the child or vice versa. Figure 2 shows this
scenario.

Figure 2 Half-duplex pipe after a fork

 What happens after the fork depends on which direction of data flow we
want.

 For a pipe from the parent to the child, the parent closes the read
end of the pipe (fd[0]), and the child closes the write end (fd[1]).
Figure 3 shows the resulting arrangement of descriptors.

Figure 3 Pipe from parent to child

 For a pipe from the child to the parent, the parent closes fd[1], and the
child closes fd[0]. When one end of a pipe is closed, the following two
rules apply.
 If we read from a pipe whose write end has been closed, read

returns 0 to indicate an end of file after all the data has been
read.

 If we write to a pipe whose read end has been closed, the signal
SIGPIPE is generated. If we either ignore the signal or catch it
and return from the signal handler, write returns 1 with errno set
to EPIPE.

PROGRAM: shows the code to create a pipe between a parent and its child and
to send data down the pipe.
#
i
n
c
l
u
d
e

"
a
p
u
e
.
h
"

i
n
t

m
a
i
n
(
v
o
i
d
)
{

int n;

int fd[2];
pid_t pid;

char line[MAXLINE];

i
f

(
p
i
p
e
(
f
d
)

<

0
)

e
r
r
_
s
y
s
(
"
p
i
p
e

e
r
r
o
r
"
)
;

i
f

(
(
p
i
d

=

f
o
r
k
(
)

)

<

0
)

{

e
r
r
_
s
y
s
(
"
f
o
r
k

e
r
r
o
r
"
)
;

}
e
l
s
e

i
f

(
p
i
d

>

0
)

{
 /* parent */ close(fd[0]);
write(fd[1], "hello world\n", 12);

} else { /*
c
h
i
l
d

*
/

c
l
o
s
e
(
f
d
[
1
]
)
;

n

=

r
e
a
d
(
f
d
[
0
]
,

l
i
n
e
,

M
A
X
L
I
N
E
)
;
w
r
i
t
e
(
S
T
D
O
U
T
_
F
I
L
E
N

O
,

l
i
n
e
,

n
)
;

}

exit(0);
}

2. popen AND pcloseFUNCTIONS

 Since a common operation is to create a pipe to another process, to
either read its output or send it input, the standard I/O library has
historically provided the popen and pclose functions.

 These two functions handle all the dirty work that we've been doing
ourselves: creating a pipe, forking a child, closing the unused ends
of the pipe, executing a shell to run the command, and waiting for
the command to terminate.

 The function popen does a fork and exec to execute the cmdstring,
and returns a standard I/O file pointer.

If type is "r", the file pointer is connected to the standard output of
cmdstring

Figure 4 Result of fp = popen(cmdstring,
"r")

If type is "w", the file pointer is connected to the standard input of
cmdstring, as shown:

#include <stdio.h>

FILE *popen(const char *cmdstring, const char *type);

Returns: file pointer if OK, NULL on error

int pclose(FILE *fp);

Returns: termination status of cmdstring, or 1 on error

Figure 5 Result of fp = popen(cmdstring,
"w")

3. COPROCESSES
 A UNIX system filter is a program that reads from standard input and

writes to standard output.
 Filters are normally connected linearly in shell pipelines.
 A filter becomes a coprocess when the same program generates

the filter's input and reads the filter's output.
 A coprocess normally runs in the background from a shell, and its

standard input and standard output are connected to another
program using a pipe.

 The process creates two pipes: one is the standard input of the
coprocess, and the other is the standard output of the coprocess.
Figure 6 shows this arrangement.

Figure 6. Driving a coprocess by writing its standard input and reading
its standard output

Program: Simple filter to add two numbers
#
i
n
c
l
u
d
e

"
a
p
u
e
.
h
"

i
n

t

m
a
i
n
(
v
o
i
d
)
{

i
n
t

n
,

i
n
t
1
,

i
n
t
2
;

c
h
a
r

l
i
n
e
[
M
A
X
L
I
N
E
]
;

while ((n = read(STDIN_FILENO, line, MAXLINE)) > 0)
{ line[n] = 0; /* null terminate */

if (sscanf(line, "%d%d", &int1, &int2) == 2)

{
sprintf
(line,
"%d\n",
int1 +
int2); n

#include <sys/stat.h>
int mkfifo(const char *pathname, mode_t mode);

Returns: 0 if OK, -1 on error

=
strlen(
line);
if

(write(S
TDOUT_FI
LENO,
line, n)
!= n)
err_sys(
"write
error");

} else {
if (write(STDOUT_FILENO,

"invalid args\n", 13)
!= 13) err_sys("write
error");

}

}
exit(0);

}

4. FIFOs
 FIFOs are sometimes called named pipes. Pipes can be used

only between related processes when a common ancestor has
created the pipe.

Once we have used mkfifo to create a FIFO, we open it using open. When
we open a FIFO, the nonblocking flag (O_NONBLOCK) affects what
happens.

In the normal case (O_NONBLOCK not specified), an open for
read-only blocks until some other process opens the FIFO for
writing. Similarly, an open for write-only blocks until some other
process opens the FIFO for reading.
If O_NONBLOCK is specified, an open for read-only returns
immediately. But an open for write-only returns 1 with errno set to
ENXIO if no process has the FIFO open for reading.

There are two uses for FIFOs.
 FIFOs are used by shell commands to pass data from one shell

pipeline to another without creating intermediate temporary
files.

 FIFOs are used as rendezvous points in client-server applications
to pass data between the clients and the servers.

Example Using FIFOs to Duplicate Output Streams

 FIFOs can be used to duplicate an output stream in a series of shell
commands.

 This prevents writing the data to an intermediate disk file.
Consider a procedure that needs to process a filtered input stream
twice. Figure shows this arrangement.

FIGURE : Procedure that processes a filtered
input stream twice

 With a FIFO and the UNIX program tee(1), we can accomplish this

procedure without using a temporary file. (The tee program copies its
standard input to both its standard output and to the file named on its
command line.)

m
k
f
i
f
o

f
i
f
o
1

p
r
o
g
3
< fifo1 &

prog1 < infile | tee fifo1 | prog2

 We create the FIFO and then start prog3 in the background, reading
from the FIFO. We then start prog1 and use tee to send its input to
both the FIFO and prog2. Figure shows the process arrangement.

 FIGURE : Using a FIFO and tee to send a stream to two different
processes

 Example Client-Server Communication Using a FIFO
 FIFO’s can be used to send data between a client and a server. If we

have a server that is contacted by numerous clients, each client can
write its request to a well-known FIFO that the server creates. Since
there are multiple writers for the FIFO, the requests sent by the clients
to the server need to be less than PIPE_BUF bytes in size.

 This prevents any interleaving of the client writes. The problem in
using FIFOs for this type of client server communication is how to
send replies back from the server to each client.

 A single FIFO can’t be used, as the clients would never know when to
read their response versus responses for other clients. One solution is
for each client to send its process ID with the request. The server then
creates a unique FIFO for each client, using a pathname based on the
client’sprocess ID.

 For example, the server can create a FIFO with the name /vtu/
ser.XXXXX, where XXXXX is replaced with the client’s process ID.
This arrangement works, although it is impossible for the server to tell
whether a client crashes. This causes the client-specific FIFOs to be
left in the file system.

 The server also must catch SIGPIPE, since it’s possible for a client to
send a request and terminate before reading the response, leaving the
client-specific FIFO with one writer (the server) and no reader.

Figure : Clients sending requests to a server
using a FIFO

Figure: Client-server communication using
FIFOs

5. System V IPC

 Identifiers and Keys
Each IPC structure (message queue, semaphore, or shared memory
segment) in the kernel is referred to by a non- negative integer identifier.
The identifier is an internal name for an IPC object. Cooperating processes
need an external naming scheme to be able to rendezvous using the same
IPC object. For this purpose, an IPC object is associated with a key that
acts as an external name.

Whenever an IPC structure is being created, a key must be specified. The
data type of this key is the primitive system data type key_t, which is often
defined as a long integer in the header <sys/types.h>. This key is converted
into an identifier by the kernel.

There are various ways for a client and a server to rendezvous at the same IPC
structure.

 The server can create a new IPC structure by specifying a key of
IPC_PRIVATE and store the returned
identifier somewhere (such as a file) for the client to obtain. The
key IPC_PRIVATE guarantees that the server creates a new IPC
structure. The disadvantage to this technique is that file system
operations are required for the server to write the integer identifier
to a file, and then for the clients to retrieve this identifier later.
The IPC_PRIVATE key is also used in a parent-child relationship.
The parent creates a new IPC structure specifying IPC_PRIVATE,
and the resulting identifier is then available to the child after the
fork. The child can pass the identifier to a new program as an
argument to one of the execfunctions.

 The client and the server can agree on a key by defining the key in

#include <sys/ipc.h>
key_t ftok(const char *path, int id);

Returns: key if OK, (key_t)-1 on error

a common header, for example. The server then creates a new IPC
structure specifying this key. The problem with this approach is
that it's possible for the key to already be associated with an IPC
structure, in which case the get function (msgget, semget, or
shmget) returns an error. The server must handle this error, deleting
the existing IPC structure, and try to create it again.

 The client and the server can agree on a pathname and project ID
(the project ID is a character value between 0 and 255) and call the
function ftok to convert these two values into a key. This key is
then used in step 2. The only service provided by ftok is a way of
generating a key from a pathname and project ID.

 The path argument must refer to an existing file. Only the lower 8 bits
of id are used when generating the key.

 The key created by ftok is usually formed by taking parts of the
st_dev and st_ino fields in the stat structure corresponding to the
given pathname and combining them with the project ID.

 If two pathnames refer to two different files, then ftok usually
returns two different keys for the two pathnames. However,
because both i-node numbers and keys are often stored in long
integers, there can be information loss creating a key. This means
that two different pathnames to different files can generate the same
key if the same project ID isused.

 Permission Structure
 XSI IPC associates an ipc_perm structure with each IPC structure.

This structure defines the permissions and owner and includes at
least the following members:
struct ipc_perm
{

uid_t uid; /* owner's
effective user id */
gid_t gid; /* owner's
effective group id */
uid_t cuid; /*
creator's effective
user id */ gid_t cgid;
/* creator's effective
group id */ mode_t mode;
/* access modes */
.

.
};

 All the fields are initialized when the IPC structure is created. At a

later time, we can modify the uid, gid, and mode fields by calling
msgctl, semctl, or shmctl. To change these values, the calling
process must be either the creator of the IPC structure or the
superuser. Changing these fields is similar to calling chown or
chmod for a file.

Permission Bit
user-read 0400

user-write (alter) 0200

group-read 0040

group-write (alter) 0020

other-read 0004

other-write (alter) 0002

XSI IPC permissions

 Advantages and Disadvantages
 A fundamental problem with XSI IPC(System V IPC) is that the

IPC structures are system wide and do not have a reference count.
For example, if we create a message queue, place some messages
on the queue, and then terminate, the message queue and its
contents are not deleted. They remain in the system until
specifically read or deleted by some process calling msgrcv or
msgctl, by someone executing the ipcrm(1) command, or by the
system being rebooted. Compare this with a pipe, which is
completely removed when the last process to reference it
terminates. With a FIFO, although the name stays in the file system
until explicitly removed, any data left in a FIFO is removed when
the last process to reference the FIFO terminates.

 Another problem with XSI IPC (System V IPC) is that these IPC
structures are not known by names in the file system. We can't
access them and modify their properties with the functions. Almost
a dozen new system calls (msgget, semop, shmat, and so on) were
added to the kernel to support these IPC objects. We can't see the
IPC objects with an ls command, we can't remove them with the rm
command, and we can't change their permissions with the chmod
command. Instead, two new commands ipcs(1) and ipcrm(1)were
added.

 Since these forms of IPC don't use file descriptors, we can't use the
multiplexed I/O functions (select and poll) with them. This makes it
harder to use more than one of these IPC structures at a time or to
use any of these IPC structures with file or device I/O. For
example, we can't have a server wait for a message to be placed on
one of two message queues without some form of busy wait loop.

6. MESSAGE QUEUES

 A message queue is a linked list of messages stored within the

#include <sys/msg.h>
int msgget(key_t key, int flag);

Returns: message queue ID if OK, 1 on error

kernel and identified by a message queue identifier. We'll call the
message queue just a queue and its identifier a queue ID.

 A new queue is created or an existing queue opened by msgget.

 New messages are added to the end of a queue by msgsnd.
 Every message has a positive long integer type field, a non-

negative length, and the actual data bytes (corresponding to the
length), all of which are specified to msgsnd when the message is
added to a queue.

 Messages are fetched from a queue by msgrcv. We don't have to
fetch the messages in a first-in, first- out order. Instead, we can
fetch messages based on their type field.

Each queue has the following msqid_dsstructure associated with it:

struct msqid_ds
{

Struct ipc_perm msg_perm;

msgqnum_t msg_qnum; /* #

of messages on queue */ msglen_t
msg_qbytes; /*
max # of bytes on queue */ pid_t
 msg_lspid; /* pid
of last msgsnd() */

pid_t msg_lspid; /*

pid of last msgrcv() */ time_t
 msg_stime; /*

last-msgsnd() time */ time_t
 msg_rtime; /*

last-msgrcv() time */ time_t
 msg_ctime; /*
last-change time */

.

.

};

This structure defines the current status of the queue.

msgget

 The first function normally called is msgget to either open an existing
queue or create a new queue.

When a new queue is created, the following members of the msqid_ds structure
are initialized.

#include <sys/msg.h>

int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);

Returns: 0 if OK, -1 on error

 The ipc_perm structure is initialized. The mode member of this
structure is set to the corresponding permission bits of flag.

 msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are all set
to 0.

 msg_ctime is set to the current time.
 msg_qbytes is set to the system limit.

On success, msgget returns the non-negative queue ID. This value is then used
with the other three message queue functions.

Msgctl
 The msgctl function performs various operations on a queue.

The cmd argument specifies the command to be performed on the queue
specified by msqid.

Msgsnd

 Data is placed onto a message queue by calling msgsnd.

 Each message is composed of a positive long integer type field, a non-
negative length (nbytes), and the actual data bytes (corresponding to
the length). Messages are always placed at the end of the queue.

 The ptr argument points to a long integer that contains the positive
integer message type, and it is immediately followed by the message
data. (There is no message data if nbytes is 0.) If the largest message
we send is 512 bytes, we can define the following structure:
struct mymesg

{
long mtype; /* positive message type */
char mtext[512]; /* message data, of length nbytes */

};

 The ptr argument is then a pointer to a mymesg structure. The message
type can be used by the receiver to fetch messages in an order other than
first in, first out.

#include <sys/msg.h>
int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Returns: 0 if OK, -1 o

#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *ptr, size_t nbytes, long type, int flag);

Returns: size of data portion of message if OK, -1 on error.

msgrcv

 Messages are retrieved from a queue by msgrcv

The type argument lets us specify which message we want.

type == 0 The first message on the queue is returned.

type > 0 The first message on the queue whose message type equals type is returned.

type < 0 The first message on the queue whose message type is the lowest value less
than or equal to the absolute value of type is returned.

7. SEMAPHORES

A semaphore is a counter used to provide access to a shared data object for
multiple processes.

To obtain a shared resource, a process needs to do the following:
1. Test the semaphore that controls the resource.
2. If the value of the semaphore is positive, the process can use the

resource. In this case, the process
decrements the semaphore value by 1, indicating that it has used one unit
of the resource.

3. Otherwise, if the value of the semaphore is 0, the process goes
to sleep until the semaphore value is greater than 0. When the
process wakes up, it returns to step 1.

When a process is done with a shared resource that is controlled by a
semaphore, the semaphore value is incremented by 1. If any other
processes are asleep, waiting for the semaphore, they are awakened.
A common form of semaphore is called a binary semaphore. It controls a
single resource, and its value is initialized to 1. In general, however, a
semaphore can be initialized to any positive value, with the value
indicating how many units of the shared resource are available for sharing.
XSI semaphores are, unfortunately, more complicated than this. Three
features contribute to this unnecessary complication.

1. A semaphore is not simply a single non-negative value. Instead, we
have to define a semaphore as a set of one or more semaphore
values. When we create a semaphore, we specify the number of
values in the set.

2. The creation of a semaphore (semget) is independent of its
initialization (semctl). This is a fatal flaw, since we cannot
atomically create a new semaphore set and initialize all the values
in the set.

3. Since all forms of XSI IPC remain in existence even when no
process is using them, we have to worry about a program that
terminates without releasing the semaphores it has been allocated.
The undo feature that we describe later is supposed to handle this.

The kernel maintains a semid_dsstructure for each semaphore set:
struct semid_ds

{
struct ipc_perm sem_perm;
unsigned short sem_nsems; /* #
of semaphores in set */ time_t
 sem_otime; /* last-semop()
time */
time_t sem_ctime; /* last-change time */

.

.

.
}
;

Each semaphore is represented by an anonymous structure containing at least
the following members:

struct

{
unsigned short semval; /*
semaphore value, always >= 0 */
pid_t sempid; /* pid for
last operation */
unsigned short semncnt; /* # processes
awaiting semval>curval */ unsigned short
semzcnt; /* # processes awaiting
semval==0 */

.

.

.
};

semget
The first function to call is semget to obtain a semaphore ID.

When a new set is created, the following members of the semid_ds
structure are initialized.

 The ipc_perm structure is initialized. The mode member of this structure is
set to the corresponding permission bits of flag.

 sem_otime is set to 0.

#include <sys/sem.h>

int semget(key_t key, int nsems, int flag);
Returns: semaphore ID if OK, 1 o

#include <sys/sem.h>
int semop(int semid, struct sembuf semoparray[], size_t nops);

Returns: 0 if OK, -1 on error.

 sem_ctime is set to the current time.

 sem_nsems is set to nsems.

 The number of semaphores in the set is nsems. If a new set is being
created (typically in the server), we must specify nsems. If we are
referencing an existing set (a client), we can specify nsems as 0.

Semctl

 The semctl function is the catchall for various semaphore operations.

 The fourth argument is optional, depending on the command requested, and

if present, is of type semun, a union of various command-specific arguments:

union semun

{
intval; /* for SETVAL */
struct semid_ds *buf; /*
for IPC_STAT and IPC_SET */ unsigned
short *array; /*
for GETALL and SETALL */

};

 The cmd argument specifies one of the above ten commands to be performed
on the set specified by semid.

semop

 The function semop atomically performs an array of operations on a

semaphore set.

 The semoparray argument is a pointer to an array of semaphore operations,
represented by sembuf
structures:

struct sembuf

{
unsigned short sem_num; /* member # in
set (0, 1, ..., nsems-1) */ short sem_op;

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd,... /* union semun arg */);

/* operation (negative, 0, or positive)
/ short sem_flg; / IPC_NOWAIT,
SEM_UNDO */

};

 The nops argument specifies the number of operations (elements) in the
array.

 The sem_op element operations are values specifying the amount by
which the semaphore value is to be changed.

• If sem_op is an integer greater than zero, semop adds the value to
the corresponding semaphore element value and awakens all
processes that are waiting for the element to increase.

• If sem_op is 0 and the semaphore element value is not 0, semop
blocks the calling process (waiting for 0) and increments the count
of processes waiting for a zero value of that element.

• If sem_op is a negative number, semop adds the sem_op value to
the corresponding semaphore element value provided that the result
would not be negative. If the operation would make the element
value negative, semop blocks the process on the event that the
semaphore element value increases. If the resulting value is 0,
semop wakes the processes waiting for 0.

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 1

Chapter 1: SIGNALS AND DAEMON PROCESSES

1. Signals: The UNIX Kernel Support for Signals

2. Signal Mask

3. Sigaction

4. The SIGCHLD Signal and the waitpid Function

5. The sigsetjmp and siglongjmp Function

6. Kill

7. Alarm

8. Interval Timers

9. POSIX.lb Timers

10. Daemon Processes: Introduction

11. Daemon Characteristics

12. Coding Rules

13. Error Logging

14. Client-Server Model.

 Signals are software interrupts.

 Signals provide a way of handling asynchronous events: a user at a terminal typing the interrupt

key to stop a program or the next program in a pipeline terminating prematurely.

Name Description Default action

SIGABRT abnormal termination (abort) terminate+core

SIGALRM timer expired (alarm) terminate

SIGBUS hardware fault terminate+core

SIGCANCEL threads library internal use ignore

SIGCHLD change in status of child ignore

SIGCONT continue stopped process continue/ignore

SIGEMT hardware fault terminate+core

SIGFPE arithmetic exception terminate+core

SIGFREEZE checkpoint freeze ignore

SIGHUP hangup terminate

SIGILL illegal instruction terminate+core

SIGINFO status request from keyboard ignore

SIGINT terminal interrupt character terminate

SIGIO asynchronous I/O terminate/ignore

SIGIOT hardware fault terminate+core

SIGKILL termination terminate

SIGLWP threads library internal use ignore

SIGPIPE write to pipe with no readers terminate

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 2

SIGPOLL pollable event (poll) terminate

SIGPROF profiling time alarm (setitimer) terminate

SIGPWR power fail/restart terminate/ignore

SIGQUIT terminal quit character terminate+core

SIGSEGV invalid memory reference terminate+core

SIGSTKFLT coprocessor stack fault terminate

SIGSTOP stop stop process

SIGSYS invalid system call terminate+core

SIGTERM termination terminate

SIGTHAW checkpoint thaw ignore

SIGTRAP hardware fault terminate+core

SIGTSTP terminal stop character stop process

SIGTTIN background read from control tty stop process

SIGTTOU background write to control tty stop process

SIGURG urgent condition (sockets) ignore

SIGUSR1 user-defined signal terminate

SIGUSR2 user-defined signal terminate

SIGVTALRM virtual time alarm (setitimer) terminate

SIGWAITING threads library internal use ignore

SIGWINCH terminal window size change ignore

SIGXCPU CPU limit exceeded (setrlimit) terminate+core/ignor

e

SIGXFSZ file size limit exceeded terminate+core/ignor

 (setrlimit) e

SIGXRES resource control exceeded Ignore

 When a signal is sent to a process, it is pending on the process to handle it. The process can react to

pending signals in one of three ways:

Accept the default action of the signal, which for most signals will terminate the process.

Ignore the signal. The signal will be discarded and it has no affect whatsoever on the recipient

process. Invoke a user-defined function. The function is known as a signal handler routine and the

signal is said to be caught when this function is called.

1. THE UNIX KERNEL SUPPORT OF SIGNALS

 When a signal is generated for a process, the kernel will set the corresponding signal flag in the

process table slot of the recipient process.

 If the recipient process is asleep, the kernel will awaken the process by scheduling it.

 When the recipient process runs, the kernel will check the process U-area that contains an array of

signal handling specifications.

 If array entry contains a zero value, the process will accept the default action of the signal.

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 3

#include <signal.h>

void (*signal(int sig_no, void (*handler)(int)))(int);

#include <signal.h>

int sigprocmask(int cmd, const sigset_t *new_mask, sigset_t *old_mask);

 If array entry contains a 1 value, the process will ignore the signal and kernel will discard it.

 If array entry contains any other value, it is used as the function pointer for a user-defined signal

handler routine.

2. SIGNAL

 The function prototype of the signal API is:

 The formal arguments of the API are: sig_no is a signal identifier like SIGINT or SIGTERM. The

handler argument is the function pointer of a user-defined signal handler function.

 The following example attempts to catch the SIGTERM signal, ignores the SIGINT signal, and

accepts the default action of the SIGSEGV signal. The pause API suspends the calling process until

it is interrupted by a signal and the corresponding signal handler does a return:
#include<iostream.h>

#include<signal.h>

/*signal handler function*/

void catch_sig(int sig_num)

{

signal (sig_num,catch_sig);

cout<<”catch_sig:”<<sig_num<<endl;

}

/*main function*/

int main()

{

signal(SIGTERM,catch_sig);

signal(SIGINT,SIG_IGN);

signal(SIGSEGV,SIG_DFL);

pause(); /*wait for a signal interruption*/

}

 The SIG_IGN specifies a signal is to be ignored, which means that if the signal is generated to the

process, it will be discarded without any interruption of the process.

 The SIG_DFL specifies to accept the default action of a signal.

3. SIGNAL MASK

 A process initially inherits the parent’s signal mask when it is created, but any pending signals for the parent

process are not passed on. A process may query or set its signal mask via the sigprocmask API:

Returns: 0 if OK, 1 on error

 The new_mask argument defines a set of signals to be set or reset in a calling process signal mask,

and the cmd argument specifies how the new_mask value is to be used by the API.

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 4

#include<signal.h>

int sigemptyset (sigset_t* sigmask);

int sigaddset (sigset_t* sigmask, const int sig_num);

int sigdelset (sigset_t* sigmask, const int sig_num);

int sigfillset (sigset_t* sigmask);

int sigismember (const sigset_t* sigmask, const int sig_num);

 The possible values of cmd and the corresponding use of the new_mask value are:

Cmd value Meaning

SIG_SETMA

SK

Overrides the calling process signal mask with the value specified in the new_mask

argument.

SIG_BLOCK Adds the signals specified in the new_mask argument to the calling process signal mask.

SIG_UNBLO

CK

Removes the signals specified in the new_mask argument from the calling process signal

mask.

 If the actual argument to new_mask argument is a NULL pointer, the cmd argument will be ignored, and

the current process signal mask will not be altered.

 If the actual argument to old_mask is a NULL pointer, no previous signal mask will be returned.

 The sigset_t contains a collection of bit flags.

The BSD UNIX and POSIX.1 define a set of API known as sigsetops functions:

The sigemptyset API clears all signal flags in the sigmask argument.

The sigaddset API sets the flag corresponding to the signal_num signal in the sigmask argument. The

sigdelset API clears the flag corresponding to the signal_num signal in the sigmask argument. The

sigfillset API sets all the signal flags in the sigmask argument.

[all the above functions return 0 if OK, -1 on error]

The sigismember API returns 1 if flag is set, 0 if not set and -1 if the call fails.

The following example checks whether the SIGINT signal is present in a process signal mask and adds it to

the mask if it is not there.
#include<stdio.h>

#include<signal.h>

int main()

{

sigset_t sigmask;

sigemptyset(&sigmask); /*initialise set*/

if(sigprocmask(0,0,&sigmask)==-1) /*get current signal mask*/

{

perror(“sigprocmask”);

exit(1);

}

else sigaddset(&sigmask,SIGINT); /*set SIGINT flag*/

sigdelset(&sigmask, SIGSEGV); /*clear SIGSEGV flag*/

if(sigprocmask(SIG_SETMASK,&sigmask,0)==-1)

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 5

#include<signal.h>

int sigpending(sigset_t* sigmask);

#include<signal.h>

int sighold(int signal_num);

int sigrelse(int signal_num);

int sigignore(int signal_num);

int sigpause(int signal_num);

#include<signal.h>

int sigaction(int signal_num, struct sigaction* action, struct sigaction* old_action);

perror(“sigprocmask”);

}

A process can query which signals are pending for it via the sigpending API:

Returns 0 if OK, -1 if fails.

 The sigpending API can be useful to find out whether one or more signals are pending for a process

and to set up special signal handling methods for these signals before the process calls the

sigprocmask API to unblock them.

The following example reports to the console whether the SIGTERM signal is pending for the process:
#include<iostream.h>

#include<stdio.h>

#include<signal.h>

int main()

{

sigset_t sigmask;

sigemptyset(&sigmask);

if(sigpending(&sigmask)==-1)

perror(“sigpending”);

else cout << “SIGTERM signal is:”

<< (sigismember(&sigmask,SIGTERM) ? “Set” : “No Set”) << endl;

}

In addition to the above, UNIX also supports following APIs for signal mask manipulation:

4. SIGACTION

 The sigaction API blocks the signal it is catching allowing a process to specify additional signals to

be blocked when the API is handling a signal.

The sigaction API prototype is:

Returns: 0 if OK, 1 on error

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 6

The struct sigaction data type is defined in the <signal.h> header as:
struct sigaction

{

void (*sa_handler)(int);

sigset_t sa_mask;

int sa_flag;

}

 The sa_handler field can be set to SIG_IGN, SIG_DFL, or a

 user defined signal handler function.

 The sa_mask field specifies additional signals that process wishes to block when it is handling signo signal.

 The signalno argument designates which signal handling action is defined in the action argument.

 The previous signal handling method for signalno will be returned via the

 oldaction argument if it is not a NULL pointer.

 If action argument is a NULL pointer, the calling process‘s existing

 signal handling method for signalno will be unchanged.

The following program illustrates the uses of sigaction:
#include<iostream.h>

#include<stdio.h>

#include<unistd.h>

#include<signal.h>

void callme(int sig_num)

{

cout<<”catch signal:”<<sig_num<<endl;

}

int main(int argc, char* argv[])

{

sigset_t sigmask;

struct sigaction action,old_action;

sigemptyset(&sigmask);

if(sigaddset(&sigmask,SIGTERM)==-1 || sigprocmask(SIG_SETMASK,&sigmask,0)==-1)

perror(“set signal mask”);

sigemptyset(&action.sa_mask);

sigaddset(&action.sa_mask,SIGSEGV);

action.sa_handler=callme;

action.sa_flags=0;

if(sigaction(SIGINT,&action,&old_action)==-1)

perror(“sigaction”);

pause();

cout<<argv[0]<<”exists\n”;

return 0;

}

5. THE SIGCHLD SIGNAL AND THE waitpid API

 When a child process terminates or stops, the kernel will generate a SIGCHLD signal to its parent

process. Depending on how the parent sets up the handling of the SIGCHLD signal, different

events may occur:

 Parent accepts the default action of the SIGCHLD signal:

o SIGCHLD does not terminate the parent process.

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 7

#include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

int siglongjmp(sigjmp_buf env, int val);

o Parent process will be awakened.

o API will return the child’s exit status and process ID to the parent.

o Kernel will clear up the Process Table slot allocated for the child process.

o Parent process can call the waitpid API repeatedly to wait for each child it created.

 Parent ignores the SIGCHLD signal:

o SIGCHLD signal will be discarded.

o Parent will not be disturbed even if it is executing the waitpid system call.

o If the parent calls the waitpid API, the API will suspend the parent until all its child

processes have terminated.

o Child process table slots will be cleared up by the kernel.

o API will return a -1 value to the parent process.

 Process catches the SIGCHLD signal:

o The signal handler function will be called in the parent process whenever a child

process terminates.

o If the SIGCHLD arrives while the parent process is executing the waitpid system call, the

waitpid API may be restarted to collect the child exit status and clear its process table slots.

o Depending on parent setup, the API may be aborted and child process table slot not freed.

6. THE sigsetjmp AND siglongjmp APIs

The function prototypes of the APIs are:

 The sigsetjmp and siglongjmp are created to support signal mask processing.

 Specifically, it is implementation-dependent on whether a process signal mask is saved and restored

when it invokes the setjmp and longjmp APIs respectively.

 The only difference between these functions and the setjmp and longjmp functions is that sigsetjmp has

an additional argument.

 If savemask is nonzero, then sigsetjmp also saves the current signal mask of the process in env. When

siglongjmp is called, if the env argument was saved by a call to sigsetjmp with a nonzero savemask,

then siglongjmp restores the saved signal mask.

 The siglongjmp API is usually called from user-defined signal handling functions. This is because a

process signal mask is modified when a signal handler is called, and siglongjmp should be called to

ensure the process signal maskisrestoredproperlywhen“jumpingout”fromasignalhandlingfunction.

The following program illustrates the uses of sigsetjmp and siglongjmp APIs.
#include<iostream.h>

#include<stdio.h>

#include<unistd.h>

#include<signal.h>

#include<setjmp.h>

sigjmp_buf env;

void callme(int sig_num)

{

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 8

#include<signal.h>

int kill(pid_t pid, int signal_num); Returns: 0 on success, -1 on failure.

cout<< “catch signal:” <<sig_num <<endl;

siglongjmp(env,2);

}

int main()

{

sigset_t sigmask;

struct sigaction action,old_action;

sigemptyset(&sigmask);

if(sigaddset(&sigmask,SIGTERM)==-1) || sigprocmask(SIG_SETMASK,&sigmask,0)==-1)

perror(“set signal mask”);

sigemptyset(&action.sa_mask);

sigaddset(&action.sa_mask,SIGSEGV);

action.sa_handler=(void(*)())callme;

action.sa_flags=0;

if(sigaction(SIGINT,&action,&old_action)==-1)

perror(“sigaction”);

if(sigsetjmp(env,1)!=0)

{

cerr<<”return from signal interruption”;

return 0;

}

else

cerr<<”return from first time sigsetjmp is called”;

pause();

 }

7. KILL

 A process can send a signal to a related process via the kill API. This is a simple means of

inter-process communication or control. The function prototype of the API is:

 The signal_num argument is the integer value of a signal to be sent to one or more processes

designated by pid. The possible values of pid and its use by the kill API are:

pid > 0 The signal is sent to the process whose process ID is pid.

pid == 0 The signal is sent to all processes whose process group ID equals the process group ID of

the sender and for which the sender has permission to send the signal.

pid < 0 The signal is sent to all processes whose process group ID equals the absolute value of pid

and for which the sender has permission to send the signal.

pid == 1 The signal is sent to all processes on the system for which the sender has permission to send

the signal.

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 9

The following program illustrates the implementation of the UNIX kill command using the kill API:

#include<iostream.h>

#include<stdio.h>

#include<unistd.h>

#include<string.h>

#include<signal.h>

int main(int argc,char** argv)

{

int pid, sig =

SIGTERM;

if(argc==3)

{

if(sscanf(argv[1],”%d”,&sig)!=1)

{

cerr<<”invalid number:” << argv[1] <<

endl; return -1;

}

argv++,argc--;

}

while(--argc>0)

if(sscanf(*++argv, “%d”, &pid)==1)

{

if(kill(pid,sig)==-1)

perror(“kill”);

}

else

cerr<<”invalid pid:” << argv[0] <<endl;

return 0;

}

}

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 10

#include<signal.h>

Unsigned int alarm(unsigned int time_interval); Returns: 0 or number of seconds until previously set alarm

 The UNIX kill command invocation syntax is:

Kill [-<signal_num>] <pid>......

Where signal_num can be an integer number or the symbolic name of a signal. <pid> is process ID.

8. ALARM

 The alarm API can be called by a process to request the kernel to send the

SIGALRM signal after a certain number of real clock seconds. The function

prototype of the API is:

The alarm API can be used to implement the sleep API:

#include<signal.h>

#include<stdio.h>

#include<unistd.h>

void wakeup()

{ ; }

unsigned int sleep (unsigned int timer)

{

struct sigaction action;

action.sa_handler=wakeup

; action.sa_flags=0;

sigemptyset(&action.sa_m

ask);

if(sigaction(SIGALARM,&a

ction,0)==-1)

{

perror(“

sigactio

n”);

return -

1;

}

(void)

alarm

(timer);

(void)

pause();

return 0;

}

9. INTERVAL TIMERS

 The interval timer can be used to schedule a process to do some tasks at a fixed time

interval, to time the execution of some operations, or to limit the time allowed for

the execution of some tasks.

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 11

The following program illustrates how to set up a real-time clock interval timer using the alarm

API:

#include<stdio.h>

#include<unistd.h>

#include<signal.h>

#define INTERVAL 5

void callme(int sig_no)

{

alarm(INTERVAL);

/*do scheduled tasks*/

}

int main()

{

struct sigaction action;

sigemptyset(&action.sa_ma

sk);

action.sa_handler=(void(*

)()) callme;

action.sa_flags=SA_RESTAR

T;

if(sigaction(SIGALARM,&ac

tion,0)==-1)

{

perror(“

sigactio

n”);

return

1;

}

if(alarm(INTERVAL)==-1)

perr

or(“alarm”)

; else

while(1)

{

/*do normal operation*/

}

return 0;

}

In addition to alarm API, UNIX also invented the setitimer API, which can be used to

define up to three different types of timers in a process:

 Real time clock timer

 Timer based on the user time spent by a process

 Timer based on the total user and system times spent by a process

The getitimer API is also defined for users to query the timer values that are set

by the setitimer API. The setitimer and getitimer function prototypes are:

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 12

The arguments to the above APIs specify which timer to process. Its possible values and

the corresponding timer types are:

The struct itimerval datatype is defined as:
struct itimerval

{

struct timeval it_value;

 /*cur

rent value*/ struct timeval it_interval;

 /*

time interval*/

};

Example program:
#include<stdio.h>

#include<unistd.h>

#include<signal.h>

#define INTERVAL

5 void callme(int

sig_no)

{

/*do scheduled tasks*/

}

int main()

{

struct

itimerval

val; struct

sigaction

action;

sigemptyset(&action.sa_ma

sk);

action.sa_handler=(void(*

)()) callme;

action.sa_flags=SA_RESTAR

#include<sys/time.h>

int setitimer(int which, const struct itimerval * val, struct itimerval * old);

int getitimer(int which, struct itimerval * old);

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 13

#include<signal.

h>

#include<time.h>

int timer_create(clockid_t clock, struct sigevent* spec, timer_t* timer_hdrp);

int timer_settime(timer_t timer_hdr, int flag, struct itimerspec* val, struct

itimerspec* old); int timer_gettime(timer_t timer_hdr, struct itimerspec* old);

int timer_getoverrun(timer_t

timer_hdr); int timer_delete(timer_t

timer_hdr);

T;

if(sigaction(SIGALARM,&ac

tion,0)==-1)

{

perror(“

sigactio

n”);

return

1;

}

val.it_interval.tv_sec =INTERVAL; val.it_interval.tv_usec =0; val.it_value.tv_sec =INTERVAL;

val.it_value.tv_usec =0;

if(setitimer(ITIMER_REAL,

&val , 0)==-1)

perror(“alarm”);

else while(1)

{

/*do normal operation*/

}

return 0;

}

The setitimer and getitimer APIs return a zero value if they succeed or a -1 value if they fail.

10. POSIX.1b TIMERS

POSIX.1b defines a set of APIs for interval timer manipulations. The POSIX.1b timers are

more flexible and powerful than are the UNIX timers in the following ways:

 Users may define multiple independent timers per system clock.

 The timer resolution is in nanoseconds.

 Users may specify the signal to be raised when a timer expires.

 The time interval may be specified as either an absolute or a relative time.

The POSIX.1b APIs for timer manipulations are:

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 14

DAEMON PROCESSES

11. INTRODUCTION

 Daemons are processes that live for a long time. They are often started when the

system is bootstrapped and terminate only when the system is shut down.

12. DAEMON CHARACTERISTICS

The characteristics of daemons are:

 Daemons run in background.

 Daemons have super-user privilege.

 Daemons don’t have controlling terminal.

 Daemons are session and group leaders.

13. CODING RULES

 Call umask to set the file mode creation mask to 0. The file mode creation mask

that's inherited could be set to deny certain permissions. If the daemon process is

going to create files, it may want to set specific permissions.

 Call fork and have the parent exit. This does several things. First, if the daemon

was started as a simple shell command, having the parent terminate makes the shell

think that the command is done. Second, the child inherits the process group ID of

the parent but gets a new process ID, so we're guaranteed that the child is not a

process group leader.

 Call setsid to create a new session. The process (a) becomes a session leader of a

new session, (b) becomes the process group leader of a new process group, and (c)

has no controlling terminal.

 Change the current working directory to the root directory. The current

working directory inherited from the parent could be on a mounted file system.

Since daemons normally exist until the system is rebooted, if the daemon stays on a

mounted file system, that file system cannot be unmounted.

 Unneeded file descriptors should be closed. This prevents the daemon from

holding open any descriptors that it may have inherited from its parent.

 Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any library

routines that try to read from standard input or write to standard output or

standard error will have no effect. Since the daemon is not associated with a

terminal device, there is nowhere for output to be displayed; nor is there anywhere

to receive input from an interactive user. Even if the daemon was started from an

interactive session, the daemon runs in the background, and the login session can

terminate without affecting the daemon. If other users log in on the same terminal

device, we wouldn't want output from the daemon showing up on the terminal, and

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 15

the users wouldn't expect their input to be read by the daemon.

Example Program:

#include <unistd,h>

#include

<sys/types.h>

#include

<fcntl.h>

int daemon_initialise()

{

pid_t pid;

if ((pid =

for()) < 0)

return –1;

else if (pid != 0)

exit(0); /* parent exits */

/* child

continue

s */

setsid(

);

chdir(“/

”);

umask(0)

;

return 0;

}

14. ERROR LOGGING

 One problem a daemon has is how to handle error messages. It can't simply write to

standard error, since it shouldn't have a controlling terminal. We don't want all the

daemons writing to the console device, since on many workstations, the console

device runs a windowing system. A central daemon error-logging facility is required.

 There are three ways to generate log messages:

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 16

#include <syslog.h>

void openlog(const char *ident, int option, int facility);

void syslog(int priority, const char *format, ...);

void closelog(void);

int setlogmask(int maskpri);

 Kernel routines can call the logfunction. These messages can be read by any user

process that opens and reads the /dev/klogdevice.

 Most user processes (daemons) call the syslog(3) function to generate log messages.

This causes the message to be sent to the UNIX domain datagram socket /dev/log.

 A user process on this host, or on some other host that is connected to this host by a

TCP/IP network, can send log messages to UDP port 514. Note that the syslog

function never generates these UDP datagrams: they require explicit network

programming by the process generating the log message.

Normally, the syslogd daemon reads all three forms of log messages. On start-up,

this daemon reads a configuration file, usually /etc/syslog.conf, which determines

where different classes of messages are to be sent. For example, urgent messages

can be sent to the system administrator (if logged in) and printed on the console,

whereas warnings may be logged to a file. Our interface to this facility is through

the syslog function.

15. CLIENT-SERVER MODEL

In general, a server is a process that waits for a client to contact it, requesting some type of

service. In Figure 13.2 [REFER PAGE 10], the service being provided by the syslogd

server is the logging of an error message.

Module 5_UNIX Programming (18CS56) 2022-2023

Prof. Mamatha B Dept of CSE Page 17

In Figure 13.2, the communication between the client and the server is one-way. The client

sends its service request to the server; the server sends nothing back to the client. In the

upcoming chapters, we'll see numerous examples of two-way communication between a

client and a server. The client sends a request to the server, and the server sends a reply back

to the client.

	The Kernel
	The Shell
	1. echo: Displaying The Message
	2. printf: An Alternative To Echo
	3. ls:listing directories and files
	Syntax
	4. who: Who Are The Users
	5. date: Displaying The System Date
	7. cal: The Calendar
	Syntax:
	$ cal
	$cal 2017 | more
	Examples:
	Syntax: (1)
	Example:
	$ type echo
	Becoming the super at login time login: root
	$su – abc
	Chapter 2: UNIX files
	$echo $HOME
	Absolute Pathnames:
	$ /bin/date
	$ pwd
	$ pwd (1)
	$ pwd (2)
	$ pwd (3)
	pwd: CHECKING YOUR CURRENT DIRECTORY
	$ pwd (4)
	cd: CHANGING THE CURRENT DIRECTORY
	mkdir: MAKING DIRECTORIES
	$mkdir patch
	$mkdir patch dba doc
	$mkdir progs progs/cprogs progs/javaprogs
	$mkdir progs/cprogs progs/javaprogs progs
	rmdir: REMOVING A DIRECTORY
	$rmdir progs
	$mkdir progs progs/cprogs progs/javaprogs (1)
	$mkdir progs/cprogs progs/javaprogs progs (1)
	 rmdir : Things to remember
	cat: DISPLAYING AND CREATING FILES
	$ cat ch1 ch2
	cat OPTIONS
	Using cat to create a file
	$ cat > new
	$ cat new
	mv: RENAMING FILES
	$ mv csb csa
	$ mv ch1 ch2 ch3 module
	$ mv rename newname
	$ rm mod1 mod2 mod3
	$rm usp/marks ds/marks
	$ rm *
	rm options
	$ rm -i ch1 ch2
	$ cp csa csb
	$ cp ch1 ch2 ch3 module
	cp options
	Copying directory structure (-R) :
	wc: COUNTING LINES,WORDS AND CHARACTERS
	$ wc ofile
	$ wc -l ofile
	$ wc -w ofile
	$ wc -c ofile
	$ wc chap01 chap02 chap03
	$ more ofile
	$ od –b file
	 -c character option
	$ od –bc file

	Chapter 1: File attributes and permissions
	 File type and Permissions
	 Links
	 Ownership
	 Group ownership
	 File size
	 Last Modification date and time
	 File name
	For example,
	The –d option: Listing Directory Attributes
	$ls -d
	For example,
	File Ownership
	File Permissions
	For Example:

	Changing File Permissions
	Relative Permissions
	 Category: u – user g – group o – others a - all (ugo)
	 Permissions: r – read w – write x - execute
	$chmod u+x xstart
	$chmod ugo+x xstart or chmod a+x xstart or chmod +x xstart
	$chmod go-r xstart
	$ls –l xstart
	Absolute Permissions
	$chmod a+rw xstart
	$chmod 666 xstart
	$chmod 644 xstart
	$chmod 761 xstart
	$chmod u-rw, go-r xstart or
	$chmod a+rwx xstart or chmod 777 xstart
	3. Using chmod Recursively
	$chmod -R a+x shell_scripts

	4. Directory Permissions
	$mkdir c_progs

	chown
	$ls -l note
	$chown sharma note; ls -l note

	chgrp
	#ls –l dept.lst
	#chgrp dba dept.lst; ls –l dept.lst
	1. Wild cards.
	2. Removing the special meanings of wild cards.
	4. Connecting commands: Pipe.
	6. The grep, egrep.
	The * and ?
	$ ls chap*
	$ ls chap?
	$ ls chap??
	Matching the Dot

	.bash_profile .exrc .netscape .profile
	The character class
	Examples:
	$ls chap[x-z]
	$cat chap0\[1-3\]
	$rm My\ Document.doc
	Examples: (1)
	3. Three standard files and redirection.
	 These files are streams of characters which many commands see as input and output.
	Standard input: The file (stream) representing input, connected to the keyboard.
	Standard error: The file (stream) representing error messages that emanate from the command or shell, connected to the display.
	The standard input can represent three input sources:

	How input redirection works:
	$ wc < sample.txt

	Standard output
	The standard output can represent three possible destinations:

	How output redirection works:
	$ wc sample.txt > newfile

	Standard error:
	4. Connecting commands: Pipe
	Syntax:
	$ command1 > temp
	$ rm temp
	$wc –l > user.txt 5
	$ ls -l | wc –l Displays number of file in current directory

	5. The grep, egrep.
	$grep options pattern filename(s)
	Examples:
	$ grep “director” emp1.lst emp2.lst

	grep options:
	The below table shows all the options used by grep.
	 Ignoring case (-i):
	$ grep -i 'agarwal' emp.lst
	 Deleting Lines (-v):
	$ grep -v 'director' empl.lst
	 Displaying Line Numbers (-n):
	$ grep -n 'marketing' emp.lst
	 Counting lines containing Pattern (-c):
	$ grep -c 'director' emp.lst
	 Matching Multiple Patterns (-e):
	 Taking patterns from a file (-f):
	$ grep -f patterns.lst emp.lst

	Basic Regular Expression (Bre)
	The character class (1)
	$ grep '[aA]g[ar][ar]wal' emp.lst

	The *
	$ grep '[aA]gg*[ar][ar]wal' emp.lst

	The Dot
	$ grep 'j.*saxena' emp.lst

	Specifying pattern locations (^ and $)
	$ grep '^2' emp.lst
	$ grep '7...$' emp.lst
	The + and ?
	$ grep -E “[aA]gg?arwal” emp.lst
	Matching Multiple Patterns(|, (and))
	$ grep -E '(sen|das)gupta' emp.lst

	2. File and Record Locking
	 The l_type field specifies the lock type to be set or unset.

	3. Directory File API’s
	5. FIFO file API’s
	6. Symbolic Link File API’s
	 A C program starts execution with a function called main.

	5. ENVIRONMENT LIST
	 Each program is also passed an environment list. Like the argument list, the environment list is an array of character pointers, with each pointer containing the address of a null-terminated C string.

	6. MEMORY LAYOUT OF A C PROGRAM
	Historically, a C program has been composed of the following pieces:
	 The pointer returned by the three allocation functions is guaranteed to be suitably aligned so that it can be used for any data object.
	 In C, we can't goto a label that's in another function. Instead, we must use the setjmp and longjmp functions to perform this type of branching. As we'll see, these two functions are useful for handling error conditions that occur in a deeply nested...
	RLIMIT_AS The maximum size in bytes of a process's total available memory.
	RLIMIT_VMEM This is a synonym for RLIMIT_AS. The resource limits affect the calling process and
	The waitid function is similar to waitpid, but provides extra flexibility.

	1. CHANGING USER IDs AND GROUP IDs
	setreuidand setregidFunctions
	seteuid and setegid functions :
	system FUNCTION
	Program: The systemfunction, without signal handling
	Program: Calling the system function
	Program: Execute the command-line argument using system

	4. USER IDENTIFICATION
	5. PROCESS TIMES
	 command > output_file_spec
	command < input_file_spec
	Overview of IPC Methods
	INTRODUCTION
	1. PIPES

	2. popen AND pcloseFUNCTIONS

	3. COPROCESSES
	5. System V IPC
	 Identifiers and Keys
	 Permission Structure
	XSI IPC permissions

	6. MESSAGE QUEUES
	struct msqid_ds
	Struct ipc_perm msg_perm;
	.
	};

	msgget
	Msgctl
	Msgsnd
	msgrcv
	struct semid_ds
	struct ipc_perm sem_perm;
	time_t sem_ctime; /* last-change time */
	.
	};
	Semctl
	union semun
	intval; /* for SETVAL */
	};

	semop
	Chapter 1: SIGNALS AND DAEMON PROCESSES
	1. THE UNIX KERNEL SUPPORT OF SIGNALS
	2. SIGNAL
	3. SIGNAL MASK
	4. SIGACTION
	5. THE SIGCHLD SIGNAL AND THE waitpid API
	6. THE sigsetjmp AND siglongjmp APIs
	Kill [-<signal_num>] <pid>......

	8. ALARM
	9. INTERVAL TIMERS
	10. POSIX.1b TIMERS
	11. INTRODUCTION
	13. CODING RULES

